Page 544 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 544

518                                                OCH 3
                                                           O
      CHAPTER 6                                       CH 3
      Concerted                              CH 3             N
      Cycloadditions,                                          CH 3
      Unimolecular                                            SO CF 3
                                                                 2
      Rearrangements, and                   CH 3           N
      Thermal Eliminations                                 Al  O
                                                         N
                                                             CH 3
                                                          O SCF
                                                   CH 3    2   3
                       Entry 9 uses the oxaborazolidine catalysts discussed on p. 505 with 2-bromopropenal
                       as the dienophile. The aldehyde adopts the exo position in each case, which is consistent
                       with the proposed TS model. Entry 10 illustrates the use of a cationic oxaborazolidine
                       catalyst. The chirality is derived from trans-1,2-diaminocyclohexane. Entry 12 shows
                       the use of a TADDOL catalyst in the construction of the steroid skeleton. Entry 13
                       is an intramolecular D-A reaction catalyzed by a Cu-bis-oxazoline. Entries 14 and 15
                       show the use of the oxazaborolidinone catalyst with more complex dienes.


                       6.1.7. Intramolecular Diels-Alder Reactions

                           Intramolecular Diels-Alder (IMDA) reactions are very useful in the synthesis
                       of polycyclic compounds. 120  The stereoselectivity of a number of IMDA reactions
                       has been analyzed and conformational factors in the TS often play the dominant
                       role in determining product structure. 121  It has also been noted in certain
                       systems that the stereoselectivity is influenced by the activating substituent on the
                       dienophile double bond, both for thermal and Lewis acid–catalyzed reactions. 122  The
                       general trends in regioselectivity are in agreement with frontier orbital concepts,
                       with conformational effects being the main factors in determining stereoselec-
                       tivity. Since the conformational interactions depend on the substituent pattern
                       in the specific case, no general rules for stereoselectivity can be put forward.
                       Molecular modeling can frequently identify the controlling structural features. 123
                           It is possible to introduce substituents that can influence the conformational
                       equilibria to favor a particular product. In the reactions shown below, the addition of
                       the trimethylsilyl substituent leads to a single stereoisomer in 85% yield, whereas in
                       the unsubstituted system two stereoisomers are formed in ratios from 4:1 to 8:1. 124

                       120
                          W. Oppolzer, Angew. Chem. Int. Ed. Engl., 16, 10 (1977); G. Brieger and J. N. Bennett, Chem. Rev., 80,
                          63 (1980); E. Ciganek, Org. React., 32, 1 (1984); D. F. Taber, Intramolecular Diels-Alder and Alder Ene
                          Reactions, Springer-Verlag, Berlin, 1984.
                       121   W. R. Roush, A. I. Ko, and H. R. Gillis, J. Org. Chem., 45, 4264 (1980); R. K. Boeckman, Jr., and S. K. Ko,
                          J. Am. Chem. Soc., 102, 7146 (1980); W. R. Roush and S. E. Hall, J. Am. Chem. Soc., 103, 5200 (1981);
                          K. A. Parker and T. Iqbal, J. Org. Chem., 52, 4369 (1987).
                       122
                          J. A. Marshall, J. E. Audia, and J. Grote, J. Org. Chem., 49, 5277 (1984); W. R. Roush, A. P. Essenfeld,
                          and J. S. Warmus, Tetrahedron Lett., 28, 2447 (1987); T.-C. Wu and K. N. Houk, Tetrahedron Lett., 26,
                          2293 (1985).
                       123   K. J. Shea, L. D. Burke, and W. P. England, J. Am. Chem. Soc., 110, 860 (1988); L. Raimondi,
                          F. K. Brown, J. Gonzalez, and K. N. Houk, J. Am. Chem. Soc., 114, 4796 (1992); D. P. Dolata and
                          L. M. Harwood, J. Am. Chem. Soc., 114, 10738 (1992); F. K. Brown, U. C. Singh, P. A. Kollman,
                          L. Raimondi, K. N. Houk, and C. W. Bock, J. Org. Chem., 57, 4862 (1992); J. D. Winkler, H. S. Kim,
                          S. Kim, K. Ando, and K. N. Houk, J. Org. Chem., 62, 2957 (1997).
                       124
                          R. K. Boeckman, Jr., and T. E. Barta, J. Org. Chem., 50, 3421 (1985).
   539   540   541   542   543   544   545   546   547   548   549