Page 566 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 566

540
                                                                     H
      CHAPTER 6                            H                            O
                                            C  C  O +
      Concerted                            H
      Cycloadditions,                    C 2 5
      Unimolecular                                                 H  H  C H
                                                                        2 5
      Rearrangements, and
      Thermal Eliminations                                                             Ref. 166
                           The best yields are obtained when the ketene has an electronegative substituent,
                       such as halogen. Simple ketenes are not very stable and must usually be generated in
                       situ. The most common method for generating ketenes for synthesis is by dehydrohalo-
                       genation of acyl chlorides. This is usually done with an amine such as triethylamine. 167
                       Other activated carboxylic acid derivatives, such as acyloxypyridinium ions, have also
                       been used as ketene precursors. 168  Ketene itself and certain alkyl derivatives can be
                       generated by pyrolysis of carboxylic anhydrides. 169
                           Intramolecular ketene cycloadditions are possible if the ketene and alkene
                       functionalities can achieve an appropriate orientation. 170

                                                                                 CH
                                                                     CH 3          3
                                      CH      CH
                           CH 3         3       2         EtN(i-Pr) 2  CH 3
                                                CH COCl    105°C                      CH
                           CH 3                   2                          O          2
                                                                                      43%
                                                                                       Ref. 171

                       Some trends in relative reactivity for intramolecular ketene cycloadditions have been
                       examined by internal competitions. 172  For example, 12 gives exclusively 13, pointing
                       to a preference for five-membered rings over six-membered ones.

                                                   CH 2
                                           O                                     O
                                                Et N               CH 2
                                                 3
                             CH 2                                O
                                           CCl
                                                                    +
                               CH 2
                                          12            13     82%           not observed
                       When two different aryl substituents are compared, the double bond with an ERG
                       substituent is more reactive, as would be expected if the alkene acts primarily as an
                       electron donor.
                                                  O                         Ar 1
                                                          3
                                   Ar 2           CCl   Et N
                                   Ar 1                      Ar 2
                                                                             O
                                                                    1
                                                                            2
                                                                   Ar   ERG; Ar  EWG
                       166
                         M. Rey, S. M. Roberts, A. S. Dreiding, A. Roussel, H. Vanlierde, S. Toppert, and L. Ghosez, Helv.
                          Chim. Acta, 65, 703 (1982).
                       167
                          K. Shishido, T. Azuma, and M. Shibuya, Tetrahedron Lett., 31, 219 (1990).
                       168   R. L. Funk, P. M. Novak, and M. M. Abelman, Tetrahedron Lett., 29, 1493 (1988).
                       169
                          G. J. Fisher, A. F. MacLean, and A. W. Schnizer, J. Org. Chem., 18, 1055 (1953).
                       170
                          B. B. Snider, Chem. Rev., 88, 793 (1988).
                       171   E. J. Corey and M. C. Desai, Tetrahedron Lett., 26, 3535 (1985).
                       172
                          G. Belanger, F. Levesque, J. Paquet, and G. Barbe, J. Org. Chem., 70, 291 (2005).
   561   562   563   564   565   566   567   568   569   570   571