Page 69 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 69

1.2.6. Control of Enantioselectivity in Alkylation Reactions                        41
                  The alkylation of an enolate creates a new stereogenic center when the  -  SECTION 1.2
              substituents are nonidentical. In enantioselective synthesis, it is necessary to control  Alkylation of Enolates
              the direction of approach and thus the configuration of the new stereocenter.
                         O –                      O                O
                                                                        2
                            R Z                       R Z             CH R
                       R        +  RCH 2  X      R    CH R   or  R      R Z
                                                         2
                           R E
                                                    R E             R E
              Enantioselective enolate alkylation can be done using chiral auxiliaries. (See
              Section 2.6 of Part A to review the role of chiral auxiliaries in control of reaction stereo-
                                                                     89
              chemistry.) The most frequently used are the N-acyloxazolidinones. The 4-isopropyl
              and 4-benzyl derivatives, which can be obtained from valine and phenylalanine, respec-
              tively, and the cis-4-methyl-5-phenyl derivatives are readily available. Another useful
              auxiliary is the 4-phenyl derivative. 90
                          O              O              O            O
                          C              C              C            C
                        O   NH         O   NH         O   NH       O   NH

                            CH(CH )        CH 2 Ph   Ph    CH 3        Ph
                                  3 2
              Several other oxazolidinones have been developed for use as chiral auxiliaries. The
              4-isopropyl-5,5-dimethyl derivative gives excellent enantioselectivity. 91  5,5-Diaryl
              derivatives are also quite promising. 92

                             O                O                O
                                              C
                             C               O  NH              C
                           O   NH                             O  NH
                        CH 3              Ph           )  Naph
                                                                        )
                            CH 3  CH(CH )    Ph  CH(CH 3 2  Naph  CH(CH 3 2
                                     3 2
                  The reactants are usually N-acyl derivatives. The lithium enolates form chelate
              structures with Z-stereochemistry at the double bond. The ring substituents then govern
              the preferred direction of approach.

                  Li +    R'X
                                                      Li +
                O   O –             O  O                 –              O
                       R                   R'       O   O                   O
                C           R'X     C        R              R                   R
              O   N               O   N             C           R'X     C        R'
                                           H       O  N                O  N
                   CH(CH )                  )                                  H
                        3 2
               12                     CH(CH 3 2  Ph     CH 3  R'X    Ph     CH
                                                     13                       3
              89
                 D. A. Evans, M. D. Ennis, and D. J. Mathre, J. Am. Chem. Soc., 104, 1737 (1982); D. J. Ager, I. Prakash,
                 and D. R. Schaad, Chem. Rev., 96, 835 (1996); D. J. Ager, I. Prakash, and D. R. Schaad, Aldrichimica
                 Acta, 30, 3 (1997).
              90   E. Nicolas, K. C. Russell, and V. J. Hruby, J. Org. Chem., 58, 766 (1993).
              91
                 S. D. Bull, S. G. Davies, S. Jones, and H. J. Sanganee, J. Chem. Soc., Perkin Trans. 1, 387 (1999);
                 S. G. Davies and H. J. Sangaee, Tetrahedron: Asymmetry, 6, 671 (1995); S. D. Bull, S. G. Davies,
                 R. L. Nicholson, H. J. Sanganee, and A. D. Smith, Org. Biomed. Chem., 1, 2886 (2003).
              92   T. Hintermann and D. Seebach, Helv. Chim. Acta, 81, 2093 (1998); C. L. Gibson, K. Gillon, and
                 S. Cook, Tetrahedron Lett., 39, 6733 (1998).
   64   65   66   67   68   69   70   71   72   73   74