Page 898 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 898

874              The stereoselectivity of the (CH 	 AlCl-catalyzed reaction has also been found to be
                                                 3 2
                       sensitive to the steric bulk of the aldehyde. 34
      CHAPTER 10           The use of Lewis acid catalysts greatly expands the synthetic utility of the
      Reactions Involving  carbonyl-ene reaction. Aromatic aldehydes and acrolein undergo the ene reaction with
      Carbocations, Carbenes,                                               35
      and Radicals as Reactive  activated alkenes such as enol ethers in the presence of Yb(fod) .  Sc(O SCF 	 has
                                                                                   3
                                                                           3
                                                                                       3 3
      Intermediates    also been used to catalyze carbonyl-ene reactions. 36
                                                        Sc(O SCF )
                                                            3
                                                                3 3
                                   ArCH  O  +  CH 2                  Ar
                                                        Ac 2 O, CH CN     O 2 CCH 3
                                                               3
                       Among the more effective conditions for reaction of formaldehyde with  -
                       methylstyrenes is BF in combination with 4A molecular sieves. 37
                                        3
                                       CH 3                  BF 3      CH 2
                                              +  (CH 2  O) n  4 A M.S.  Ar   OH
                                    Ar   CH 2

                       The function of the molecular sieves in this case is believed to be as a base that
                       sequesters the protons, which otherwise would promote a variety of side reactions.
                       With chiral catalysts, the carbonyl ene reaction becomes enantioselective. Among the
                       successful catalysts are diisopropoxyTi(IV)BINOL and copper-BOX complexes.


                                    +   O  CHCO C H     t Bu-BOX           CO C H
                                                                             2 2 5
                                                2 2 5
                                                      Cu(O SCF )       H  OH
                                                              3 2
                                                          3
                                                                                96% e.e.
                                                                                        Ref. 38
                                                R-BINOL-TiCl 2       OH
                                    +  CF CH  O
                               CH 3     3         4 A M.S.
                                                                       CF 3
                                                                   CH 3
                                                                      94% yield, 98% syn, 96% e.e.
                                                                                        Ref. 39


                                                                   CH 3  OH
                                                       Ti/BINOL
                                                  (i-PrO) 2
                        (CH 3 ) 2 C  CH 2   +  O  CHCO 2 CH 3
                                                               CH 2      CO CH 3
                                                                           2
                                                                              72% yield, 95% e.e.
                                                                                        Ref. 40
                        34   T. A. Houston, Y. Tanaka, and M. Koreeda, J. Org. Chem., 58, 4287 (1993).
                        35
                          M. A. Ciufolini, M. V. Deaton, S. R. Zhu, and M. Y. Chen, Tetrahedron, 53, 16299 (1997);
                          M. A. Ciufolini and S. Zhu, J. Org. Chem., 63, 1668 (1998).
                        36   V. K. Aggarawal, G. P. Vennall, P. N. Davey, and C. Newman, Tetrahedron Lett., 39, 1997 (1998).
                        37   T. Okachi, K. Fujimoto, and M. Onaka, Org. Lett., 4, 1667 (2002).
                        38
                          D. A. Evans, C. S. Burgey, N. A. Paras, T. Vojkovsky, and S. W. Tregay, J. Am. Chem. Soc., 120,
                          5824 (1998).
                        39   K. Mikami, T. Yajima, T. Takasaki, S. Matsukawa, M. Terada, T. Uchimaru, and M. Maruta, Tetra-
                          hedron, 52, 85 (1996).
                        40
                          K. Mikami, M. Terada, and T. Nakai, J. Am. Chem. Soc., 112, 3949 (1990).
   893   894   895   896   897   898   899   900   901   902   903