Page 964 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 964

940                                      Scheme 10.13. (Continued)

      CHAPTER 10               a. R. H. Shapiro, J. H. Duncan, and J. C. Clopton, J. Am. Chem. Soc., 89, 1442 (1967).
                              b. T. Sasaki, S. Eguchi, and T. Kiriyama, J. Am. Chem. Soc., 91, 212 (1969).
      Reactions Involving      c. U. R. Ghatak and S. Chakrabarty, J. Am. Chem. Soc., 94, 4756 (1972).
      Carbocations, Carbenes,  d. D. F. Taber and J. L. Schuchardt, J. Am. Chem. Soc., 107, 5289 (1985).
      and Radicals as Reactive  e. M. P. Doyle, V. Bagheri, M. M. Pearson, and J. D. Edwards, Tetrahedron Lett., 30, 7001
      Intermediates             (1989).
                               f. Z. Majerski, Z. Hamersak, and R. Sarac-Arneri, J. Org. Chem., 53, 5053 (1988).
                              g. L. A. Paquette, S. E. Williams, R. P. Henzel, and G. R. Allen, Jr., J. Am. Chem. Soc., 94,
                                7761 (1972).
                              h. M. P. Doyle and W. Hu, Chirality, 14, 169 (2002).

                                            O    O
                                                         Rh (O CCH )    H    O
                                                           2
                                                                  3 4
                                                              2
                                CH 2  CH(CH ) C(CH ) CCHN 2                       O
                                                2 2
                                          2 3
                                                                                       Ref. 223
                       Allylic ethers and acetals can react with carbenoid reagents to generate oxonium ylides
                       that undergo [2,3]-sigmatropic shifts. 224
                                                                          O
                                            O    Rh (O CCH )  Ph  H    – CHCPh  CH 2  CH  O
                       Ph     H                    2  2  3 4
                                          CHCPh                       O +          PhCHCHCPh
                                      +  N 2                 H    CH 2
                        H     CH 2 OCH 3
                                                                        CH 3
                                                                                       OCH 3
                       10.2.6. Rearrangement Reactions
                           The most common rearrangement reaction of alkyl carbenes is the shift of
                       hydrogen, generating an alkene. This mode of stabilization predominates to the
                       exclusion of most intermolecular reactions of aliphatic carbenes and often competes
                       with intramolecular insertion reactions. For example, the carbene generated by decom-
                       position of the tosylhydrazone of 2-methylcyclohexanone gives mainly 1- and 3-
                       methylcyclohexene rather than the intramolecular insertion product.
                                    CH 3                  CH 3    CH 3
                                         NNHSO Ar NaOCH
                                              2
                                                      3
                                                              +       +
                                                  180˚C
                                                           38%     16%       trace     Ref. 225

                           Carbenes can also be stabilized by migration of alkyl or aryl groups. 2-Methyl-2-
                       phenyl-1-diazopropane provides a case in which products of both phenyl and methyl
                       migration, as well as intramolecular insertion, are observed.

                                 CH 3                         CH 3
                                         60°C                              CH 3
                               PhCCHN 2      (CH 3 ) 2 C  CHPh  +  PhC  CHCH 3   +  Ph
                                 CH 3                 50%
                                                                  9%             41%   Ref. 226
                       223
                          A. Padwa, S. F. Hornbuckle, G. E. Fryxell, and P. D. Stull, J. Org. Chem., 54, 819 (1989).
                       224   M. P. Doyle, V. Bagheri, and N. K. Harn, Tetrahedron Lett., 29, 5119 (1988).
                       225   J. W. Wilt and W. J. Wagner, J. Org. Chem., 29, 2788 (1964).
                       226
                          H. Philip and J. Keating, Tetrahedron Lett., 523 (1961).
   959   960   961   962   963   964   965   966   967   968   969