Page 311 - Advances in Biomechanics and Tissue Regeneration
P. 311

REFERENCES                                         309

            [12] V.P. Hoppenreijs, E. Pels, G.F. Vrensen, J. Oosting, W.F. Treffers, Effects of human epidermal growth factor on endothelial wound healing of
                human corneas, Invest. Ophthalmol. Vis. Sci. 33 (6) (1992) 1946–1957.
            [13] M. Matsuda, M. Sawa, H.F. Edelhauser, S.P. Bartels, A.H. Neufeld, K.R. Kenyon, Cellular migration and morphology in corneal endothelial
                wound repair, Invest. Ophthalmol. Vis. Sci. 26 (4) (1985) 443–449.
            [14] E.K. Kirkeeide, I.F. Pryme, A. Vedeler, Morphological changes in Krebs II ascites tumour cells induced by insulin are associated with differ-
                ences in protein composition and altered amounts of free, cytoskeletal-bound and membrane-bound polysomes, Mol. Cell Biochem. 118 (2)
                (1992) 131–140.
            [15] D. Zink, A.H. Fischer, J.A. Nickerson, Nuclear structure in cancer cells, Nat. Rev. Cancer 4 (9) (2004) 677–687.
            [16] J.J. Tomasek, G. Gabbiani, B. Hinz, Myofibroblasts and mechano-regulation of connective tissue remodelling, Nat. Rev. Mol. Cell Biol. 3 (5)
                (2002) 349–363.
            [17] R.M. Castilho, C.H. Squarize, K. Leelahavanichkul, Rac1 is required for epithelial stem cell function during dermal and oral mucosal wound
                healing but not for tissue homeostasis in mice, PLoS ONE 5 (1) (2010) e10503.
            [18] A.F. Chambers, A.C. Groom, I.C. MacDonald, Dissemination and growth of cancer cells in metastatic sites, Nat. Rev. Cancer 2 (8) (2002)
                563–572.
            [19] E. Fuchs, T. Tumbar, G. Guasch, Socializing with the neighbors: stem cells and their niche, Cell 116 (6) (2004) 769–778.
            [20] M.M. Nava, M.T. Raimondi, R. Pietrabissa, Controlling self-renewal and differentiation of stem cells via mechanical cues, J. Biomed. Biotech-
                nol. 2012 (2012) 797410, https://doi.org/10.1155/2012/797410.
            [21] P. Friedl, K. Wolf, Plasticity of cell migration: a multiscale tuning model, J. Cell. Sci. 188 (1) (2009) 11–19.
            [22] T. Lammermann, M. Sixt, Mechanical modes of amoeboid cell migration, Curr. Opin. Cell Biol. 21 (5) (2009) 636–644.
            [23] D.A. Lauffenburger, A.F. Horwitz, Cell migration: a physically integrated molecular process, Cell 84 (3) (1996) 359–369.
            [24] C.M. Lo, H.B. Wang, M. Dembo, Y.L. Wang, Cell movement is guided by the rigidity of the substrate, Biophys. J. 79 (1) (2000) 144–152.
            [25] A. Zemel, F. Rehfeldt, A.B.D. Discher, S.A. Safran, Optimal matrix rigidity for stress fiber polarization in stem cells, Nat. Phys. 6 (2010) 468–473.
            [26] P. Moreo, J.M. Garcia-Aznar, M. Doblar  e, Modeling mechanosensing and its effect on the migration and proliferation of adherent cells, Acta
                Biomater. 4 (3) (2008) 613–621.
            [27] M.H. Zaman, R.D. Kamm, P. Matsudaira, D.A. Lauffenburgery, Computational model for cell migration in three-dimensional matrices, Bio-
                phys. J. 89 (2005) 1389–1397.
            [28] A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification, Cell 126 (4) (2006) 677–689.
            [29] P.M. Gilbert, K.L. Havenstrite, Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture, Science 329 (5995) (2010)
                1078–1081.
            [30] N. Huebsch, P.R. Arany, Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate, Nat. Mater. 9 (2010)
                518–526.
            [31] E. Hadjipanayi, V. Mudera, R.A. Brown, Guiding cell migration in 3D: a collagen matrix with graded directional stiffness, Cell Motil. Cytoske-
                let. 66 (2009) 435–445.
            [32] R.J. Pelham Jr, Y.L. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility, Proc. Natl Acad. Sci. USA 94 (24) (1997)
                13661–13665.
            [33] L. Bosgraaf, P.J.M. Van Haastert, Navigation of chemotactic cells by parallel signaling to pseudopod persistence and orientation, PLoS ONE
                4 (8) (2009) e6842.
            [34] V.S. Deshpande, R.M. McMeeking, A.G. Evans, A bio-chemo-mechanical model for cell contractility, PNAS 103 (38) (2006) 14015–14020.
            [35] O. Hoeller, R.R. Kay, Chemotaxis in the absence of PIP3 gradients, Curr. Biol. 17 (9) (2007) 813–817.
            [36] M.P. Neilson, D.M. Veltman, P.J.M. van Haastert, S.D. Webb, J.A. Mackenzie, R.H. Insall, Chemotaxis: a feedback-based computational model
                robustly predicts multiple aspects of real cell behaviour, PLoS Biol. 9 (5) (2011) e1000618.
            [37] F.J. Vermolen, A. Gefen, A phenomenological model for chemico-mechanically induced cell shape changes during migration and cell-cell con-
                tacts, Biomech. Model Mechanobiol. 12 (2) (2013) 301–323.
            [38] B.H. Choo, R.F. Donna, L.P. Kenneth, Thermotaxis of Dictyostelium discoideum amoebae and its possible role in pseudoplasmodial thermotaxis,
                Proc. Natl Acad. Sci. USA 80 (18) (1983) 5646–5649.
            [39] A.A. Higazi, D. Kniss, J.M.E.S. Barnathan, D.B. Cines, Thermotaxis of human trophoblastic cells, Placenta 17 (8) (1996) 683–687.
            [40] R.C. Gao, X.D. Zhang, Different roles of membrane potentials in electrotaxis and chemotaxis of Dictyostelium cells, Eukaryot. Cell 10 (9) (2011)
                1251–1256.
            [41] E.M. Maria, M.B.A. Djamgoz, Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease, J. Cell Sci. 117 (9)
                (2004) 1631–1639.
            [42] M. Zhao, Electrical fields in wound healing—an overriding signal that directs cell migration, Semin. Cell Dev. Biol. 20 (6) (2009) 674–682.
            [43] P.J.M. Van Haastert, Chemotaxis: insights from the extending pseudopod, J. Cell Sci. 123 (18) (2010) 3031–3037.
            [44] K.F. Swaney, C.H. Huang, P.N. Devreotes, Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and
                polarity, Annu. Rev. Biophys. 39 (2010) 265–289.
            [45] M.E.A. Bahat, Sperm thermotaxis, Mol. Cell Endocrinol. 252 (1–2) (2006) 115–119.
            [46] Y.X. Huang, X.J. Zheng, Quantum dots as a sensor for quantitative visualization of surface charges on single living cells with nano-scale res-
                olution, Biosens. Bioelectron. 26 (8) (2011) 2114–2118.
            [47] M.E. Mycielska, M.B. Djamgoz, Cellular mechanisms of direct current electric field effects: galvanotaxis and metastatic disease, J. Cell Sci.
                117 (9) (2004) 1631–1639.
            [48] K.Y. Nishimura, R.R. Isseroff, R. Nuccitelli, Human keratinocytes migrate to the negative pole in direct current electric fields comparable to
                those measured in mammalian wounds, J. Cell Sci. 109 (1) (1996) 199–207.
            [49] E.K. Onuma, S.W. Hui, A calcium requirement for electric field-induced cell shape changes and preferential orientation, Cell Calcium 6 (3)
                (1985) 281–292.
            [50] L.J. Shanley, P. Walczysko, M. Bain, D.J. MacEwan, M. Zhao, Influx of extracellular Ca 2+ is necessary for electrotaxis in Dictyostelium, J. Cell Sci.
                119 (22) (2006) 4741–4748.
            [51] M.J. Brown, L.M. Loew, Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium indepen-
                dent, J. Cell Sci. 127 (1) (1994) 117–128.


                                          II. MECHANOBIOLOGY AND TISSUE REGENERATION
   306   307   308   309   310   311   312   313   314   315   316