Page 314 - Advances in Biomechanics and Tissue Regeneration
P. 314

312                   15. COMPUTATIONAL SIMULATION OF CELL BEHAVIOR FOR TISSUE REGENERATION

           [133] M.A. Wozniak, C.S. Chen, Mechanotransduction in development: a growing role for contractility, Nat. Rev. Mol. Cell Biol. 10 (2009) 34–43.
           [134] S.J. Mousavi, M.H. Doweidar, Role of mechanical cues in cell differentiation and proliferation: a 3D numerical model, PLoS ONE 10 (5) (2015)
                e0124529.
           [135] S.J. Mousavi, M.H. Doweidar, Numerical modeling of cell differentiation and proliferation in force-induced substrates via encapsulated mag-
                netic nanoparticles, Comput. Methods Programs Biomed. 130 (2016) 106–117.
           [136] P.A. Prokharaua, F.J. Vermolena, J.M. Garcia-Aznar, A mathematical model for cell differentiation, as an evolutionary and regulated process,
                Comput. Methods Biomech. Biomed. Eng. 17 (10) (2014) 1051–1070.
           [137] R.M. Delaine-Smith, C.R. Gwendolen, Mesenchymal stem cell responses to mechanical stimuli, Muscles Ligaments Tendons J. 2 (3) (2012)
                169–180.
           [138] D.M. Cullinane, K.T. Salisbury, Y. Alkhiary, S. Eisenberg, Effects of the local mechanical environment on vertebrate tissue differentiation dur-
                ing repair: does repair recapitulate development, J. Exp. Biol. 206 (2003) 2459–2471.
           [139] Q.Q. Wu, Q. Chen, Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of
                matrix deformation signals, Exp. Cell Res. 256 (2) (2000) 383–391.
           [140] S.J. Mousavi, M.H. Doweidar, Encapsulated piezoelectric nanoparticle-hydrogel smart material to remotely regulate cell differentiation and
                proliferation: a finite element model, Comput. Mech. 63 (3) (2018) 471–489, https://doi.org/10.1007/s00466-018-1604-7.
           [141] S. Fouliarda, S. Benhamidaa, N. Lenuzzab, F. Xaviera, Modeling and simulation of cell populations interaction, Math. Comput. Model. 49 (11)
                (2009) 2104–2108.
           [142] Hibbitt, Karlsson & Sorensen, Inc., ABAQUS-Theory Manual, sixth ed., 2011, pp. 11–13.
           [143] S.K. Akiyama, K.M. Yamada, The interaction of plasma fibronectin with fibroblastic cells in suspension, J. Biol. Chem. 260 (7) (1985) 4492–4500.
           [144] A. Sch€ afer, M. Radmacher, Influence of myosin II activity on stiffness of fibroblast cells, Acta Biomater. 1 (3) (2005) 273–280.
           [145] K.R. Foster, H.P. Schwan, Dielectric properties of tissues and biological materials: a critical review, Crit. Rev. Biomed. Eng. 17 (1989) 25–104.
           [146] K.L. Poff, M. Skokut, Thermotaxis by pseudoplasmodia of Dictyostelium discoideum, Proc. Natl Acad. Sci. USA 74 (1977) 2007–2010.
           [147] K. Tawada, H. Miyamoto, Sensitivity of paramecium thermotaxis to temperature change, J. Protozool. 20 (1973) 289–292.
           [148] R.R. Kay, P. Langridge, D. Traynor, O. Hoeller, Changing directions in the study of chemotaxis, Nat. Rev. Mol. Cell Biol. 9 (10) (2008) 455–463.
           [149] N. Andrew, R.H. Insall, Chemotaxis in shallow gradients is mediated independently of Ptdlns 3-kinase by biased choices between random
                protrusions, Nat. Cell Biol. 9 (2007) 193–200.
           [150] Y. Lee, J. Huang, Y. Wang, K. Lin, Three-dimensional fibroblast morphology on compliant substrates of controlled negative curvature, Integr.
                Biol. (Camb.) 5 (12) (2013) 1447–1455.
           [151] S. Zhang, P.G. Charest, R.A. Firtel, Spatiotemporal regulation of Ras activity provides directional sensing, Curr. Biol. 18 (2008) 1587–1593.
           [152] P.C.T. Chang, G.L. Sulik, H.G. Soong, W.C. Parkinson, Galvanotropic and galvanotactic responses of corneal endothelial cells, Formos. Med.
                Assoc. J. 95 (1996) 623–627.
           [153] G.J. Hera, H.C. Wub, M.H. Chenc, M.Y. Chene, S.C. Change, T.W. Wanga, Control of three-dimensional substrate stiffness to manipulate mes-
                enchymal stem cell fate toward neuronal or glial lineages, Acta Biomater. 9 (2) (2013) 5170–5180.
           [154] J. Fu, Y.K. Wang, M.T. Yang, R.A. Desai, X. Yu, Z. Liu, C.S. Chen, Mechanical regulation of cell function with geometrically modulated elas-
                tomeric substrates, Nat. Methods 7 (9) (2010) 733–736.
           [155] D.P. Burke, D.J. Kelly, Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechan-
                obiological model, PLoS ONE 7 (7) (2012) e40737.
           [156] N.D. Evans, C. Minelli, Substrate stiffness affects early differentiation events in embryonic stem cells, Eur. Cell Mater. 18 (2009) 1–13.






































                                          II. MECHANOBIOLOGY AND TISSUE REGENERATION
   309   310   311   312   313   314   315   316   317   318   319