Page 314 - Advances in Biomechanics and Tissue Regeneration
P. 314
312 15. COMPUTATIONAL SIMULATION OF CELL BEHAVIOR FOR TISSUE REGENERATION
[133] M.A. Wozniak, C.S. Chen, Mechanotransduction in development: a growing role for contractility, Nat. Rev. Mol. Cell Biol. 10 (2009) 34–43.
[134] S.J. Mousavi, M.H. Doweidar, Role of mechanical cues in cell differentiation and proliferation: a 3D numerical model, PLoS ONE 10 (5) (2015)
e0124529.
[135] S.J. Mousavi, M.H. Doweidar, Numerical modeling of cell differentiation and proliferation in force-induced substrates via encapsulated mag-
netic nanoparticles, Comput. Methods Programs Biomed. 130 (2016) 106–117.
[136] P.A. Prokharaua, F.J. Vermolena, J.M. Garcia-Aznar, A mathematical model for cell differentiation, as an evolutionary and regulated process,
Comput. Methods Biomech. Biomed. Eng. 17 (10) (2014) 1051–1070.
[137] R.M. Delaine-Smith, C.R. Gwendolen, Mesenchymal stem cell responses to mechanical stimuli, Muscles Ligaments Tendons J. 2 (3) (2012)
169–180.
[138] D.M. Cullinane, K.T. Salisbury, Y. Alkhiary, S. Eisenberg, Effects of the local mechanical environment on vertebrate tissue differentiation dur-
ing repair: does repair recapitulate development, J. Exp. Biol. 206 (2003) 2459–2471.
[139] Q.Q. Wu, Q. Chen, Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of
matrix deformation signals, Exp. Cell Res. 256 (2) (2000) 383–391.
[140] S.J. Mousavi, M.H. Doweidar, Encapsulated piezoelectric nanoparticle-hydrogel smart material to remotely regulate cell differentiation and
proliferation: a finite element model, Comput. Mech. 63 (3) (2018) 471–489, https://doi.org/10.1007/s00466-018-1604-7.
[141] S. Fouliarda, S. Benhamidaa, N. Lenuzzab, F. Xaviera, Modeling and simulation of cell populations interaction, Math. Comput. Model. 49 (11)
(2009) 2104–2108.
[142] Hibbitt, Karlsson & Sorensen, Inc., ABAQUS-Theory Manual, sixth ed., 2011, pp. 11–13.
[143] S.K. Akiyama, K.M. Yamada, The interaction of plasma fibronectin with fibroblastic cells in suspension, J. Biol. Chem. 260 (7) (1985) 4492–4500.
[144] A. Sch€ afer, M. Radmacher, Influence of myosin II activity on stiffness of fibroblast cells, Acta Biomater. 1 (3) (2005) 273–280.
[145] K.R. Foster, H.P. Schwan, Dielectric properties of tissues and biological materials: a critical review, Crit. Rev. Biomed. Eng. 17 (1989) 25–104.
[146] K.L. Poff, M. Skokut, Thermotaxis by pseudoplasmodia of Dictyostelium discoideum, Proc. Natl Acad. Sci. USA 74 (1977) 2007–2010.
[147] K. Tawada, H. Miyamoto, Sensitivity of paramecium thermotaxis to temperature change, J. Protozool. 20 (1973) 289–292.
[148] R.R. Kay, P. Langridge, D. Traynor, O. Hoeller, Changing directions in the study of chemotaxis, Nat. Rev. Mol. Cell Biol. 9 (10) (2008) 455–463.
[149] N. Andrew, R.H. Insall, Chemotaxis in shallow gradients is mediated independently of Ptdlns 3-kinase by biased choices between random
protrusions, Nat. Cell Biol. 9 (2007) 193–200.
[150] Y. Lee, J. Huang, Y. Wang, K. Lin, Three-dimensional fibroblast morphology on compliant substrates of controlled negative curvature, Integr.
Biol. (Camb.) 5 (12) (2013) 1447–1455.
[151] S. Zhang, P.G. Charest, R.A. Firtel, Spatiotemporal regulation of Ras activity provides directional sensing, Curr. Biol. 18 (2008) 1587–1593.
[152] P.C.T. Chang, G.L. Sulik, H.G. Soong, W.C. Parkinson, Galvanotropic and galvanotactic responses of corneal endothelial cells, Formos. Med.
Assoc. J. 95 (1996) 623–627.
[153] G.J. Hera, H.C. Wub, M.H. Chenc, M.Y. Chene, S.C. Change, T.W. Wanga, Control of three-dimensional substrate stiffness to manipulate mes-
enchymal stem cell fate toward neuronal or glial lineages, Acta Biomater. 9 (2) (2013) 5170–5180.
[154] J. Fu, Y.K. Wang, M.T. Yang, R.A. Desai, X. Yu, Z. Liu, C.S. Chen, Mechanical regulation of cell function with geometrically modulated elas-
tomeric substrates, Nat. Methods 7 (9) (2010) 733–736.
[155] D.P. Burke, D.J. Kelly, Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechan-
obiological model, PLoS ONE 7 (7) (2012) e40737.
[156] N.D. Evans, C. Minelli, Substrate stiffness affects early differentiation events in embryonic stem cells, Eur. Cell Mater. 18 (2009) 1–13.
II. MECHANOBIOLOGY AND TISSUE REGENERATION