Page 313 - Advances in Biomechanics and Tissue Regeneration
P. 313
REFERENCES 311
[93] D.J. Kelly, P.J. Prendergast, Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects, J. Biomech. 38 (7)
(2004) 1413–1422.
[94] D. Lacroix, P.J. Prendergast, A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading,
J. Biomech. 35 (9) (2002) 1163–1171.
[95] D. Lacroix, P.J. Prendergast, G. Li, D. Marsh, Biomechanical model of simulate tissue differentiation and bone regeneration: application to
fracture healing, Med. Biol. Eng. Comput. 40 (1) (2002) 14–21.
[96] D.E. Ingber, I. Tensegrity, Cell structure and hierarchical systems biology, J. Cell Sci. 116 (7) (2003) 1157–1173.
[97] C.G. Penelope, P.A. Janmey, Cell type-specific response to growth on soft materials, J. Appl. Physiol. 98 (2005) 1547–1553.
[98] A. Buxboim, I.L. Ivanovska, D.E. Discher, Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’ outside and
in? J. Cell Sci. 123 (3) (2010) 297–308.
[99] Y.T. Shiu, S. Li, W.A. Marganski, S. Uami, M.A. Schwartz, Y.L. Wang, M. Dembo, S. Chien, Rho mediates the shear-enhancement of endothelial
cell migration and traction force generation, Biophys. J. 86 (4) (2004) 2558–2565.
[100] S.J. Mousavi, M.H. Doweidar, M. Doblar e, Computational modelling and analysis of mechanical conditions on cell locomotion and cell-cell
interaction, Comput. Methods Biomech. Biomed. Eng. 17 (6) (2014) 678–693.
[101] S. Timoshenko, J.N. Goodier, Theory of Elasticity, McGraw-Hill Publishing Co, New York, NY, 1970.
[102] A.D. Bershadsky, N.Q. Balaban, B. Geiger, Adhesion-dependent cell mechanosensitivity, Annu. Rev. Cell Dev. Biol. 19 (2003) 677–695.
[103] G.W. Brofland, C.J. Wiebe, Mechanical effects of cell anisotropy on epithelia, Comput. Methods Biomech. Biomed. Eng. 7 (2) (2004) 91–99.
[104] D.L. Taylor, J. Heiple, Cellular and molecular aspects of amoeboid movement, Cold. Spring Harb. Symp. Quant. Biol. 46 (1) (1982) 101–111.
[105] S.J. Mousavi, M. Doblar e, M.H. Doweidar, Computational modelling of multi-cell migration in a multi-signalling substrate, Phys. Biol. 11 (2)
(2014) 026002.
[106] A. Ponti, M. Machacek, S.L. Gupton, C.M. Waterman-Storer, G. Danuser, Two distinct actin networks drive the protrusion of migrating cells,
Science 305 (5691) (2004) 1782–1786.
[107] D.W. James, J.F. Taylor, The stress developed by sheets of chick fibroblasts in vitro, Exp. Cell Res. 54 (1) (1969) 107–110.
[108] S.J. Mousavi, M.H. Doweidar, M. Doblar e, Cell migration and cell-cell interaction in the presence of mechano-chemo-thermotaxis, Mol. Cell
Biomech. 10 (1) (2013) 1–25.
[109] S. Ramtani, Mechanical modelling of cell/ECM and cell/cell interactions during the contraction of a fibroblast-populated collagen micro-
sphere: theory and model simulation, J. Biomech. 37 (11) (2004) 1709–1718.
[110] G.G. Stokes, On the effect of the inertial friction of fluids on the motion of pendulums, Trans. Cambr. Philos. Soc. 9 (1951) 8–106.
[111] I.V. Dokukina, M.E. Gracheva, A model of fibroblast motility on substrates with different rigidities, Biophys. J. 98 (2010) 2794–2803.
[112] E. Loth, Drag of non-spherical solid particles of regular and irregular shape, Powder Technol. 182 (2008) 342–353.
[113] S. Tran-Cong, M. Gay, E.E. Michaelides, Drag coefficients of irregularly shaped particles, Powder Technol. 139 (2004) 21–32.
[114] M. Dressel, Dynamic shape factors for particle shape characterization, Part. Charact. 2 (1985) 62–66.
[115] J.A. Jimenez, O.S. Madsen, A simple formula to estimate settling velocity of natural sediments, J. Waterw. Port Coast. Ocean Eng. 129 (2003),
https://doi.org/10.1061/(ASCE)0733-950X(2003)129:2(70).
[116] M.S. Cooper, M. Shliwa, Motility of cultured fish epidermal cells in the presence and absence of direct current electric fields, J. Cell Sci. 102 (4)
(1986) 1384–1399.
[117] D.M. Sheridan, R.R. Isseroff, R. Nuccitelli, Imposition of a physiologic DC electric field alters the migratory response of human keratinocytes on
extracellular matrix molecules, J. Invest. Dermatol. 106 (1996) 642–646.
[118] G.L. Sulik, H.K. Soong, P.C. Chang, W.C. Parkinson, S.G. Elner, V.M. Elner, Effects of steady electric fields on human retinal pigment epithelial
cell orientation and migration in culture, Acta Ophthalmol. (Copenhagen) 70 (1992) 115–122.
[119] B. Rapp, A. Boisfleury-Chevance, H. Gruler, Galvanotaxis of human granulocytes. Dose-response curve, Eur. Biophys. J. 16 (1988) 313–319.
[120] S.P. Fraser, J.K.J. Diss, M.E. Mycielska, R.C. Coombes, M.B.A. Djamgoz, Voltage-gated sodium channel expression in human breast cancer:
possible functional role in metastasis, Breast Cancer Res. Treat. 76 (2002) S142.
[121] S.J. Mousavi, M.H. Doweidar, M. Doblar e, 3D computational modelling of cell migration: a mechano-chemo-thermo-electrotaxis approach,
J. Theor. Biol. 329 (2013) 64–73.
[122] L. Armon, M. Eisenbach, Behavioral mechanism during human sperm chemotaxis: involvement of hyperactivation, PLoS ONE 6 (2011) e28359.
[123] C.B. Hong, D.R. Fontana, K.L. Poff, Thermotaxis of Dictyostelium discoideum amoebae and its possible role in pseudoplasmodial thermotaxis,
Proc. Natl Acad. Sci. USA 80 (1983) 5646–5649.
[124] H. Long, G. Yang, Z. Wang, Galvanotactic migration of EA.Hy926 endothelial cells in a novel designed electric field bioreactor, Cell Biochem.
Biophys. 61 (2011) 481–491.
[125] M.P. Sheetz, D. Felsenfeld, C.G. Galbraith, D. Choquet, Cell migration as a five-step cycle, Biochem. Soc. Symp. 65 (1997) 233–243.
[126] S.J. Mousavi, M.H. Doweidar, A novel mechanotactic 3D modeling of cell morphology, J. Phys. Biol. 11 (4) (2014) 046005.
[127] S.J. Mousavi, M.H. Doweidar, Three-dimensional numerical model of cell morphology during migration in multi-signaling substrates, PLoS
ONE 10 (3) (2015) e0122094.
[128] D. Wessels, E. Voss, N.V. Bergen, R. Burns, J. Stites, D.R. Soll, A computer-assisted system for reconstructing and interpreting the dynamic
three-dimensional relationships of the outer surface, nucleus, and pseudopods of crawling cells, Cell Motil. Cytoskelet. 41 (1998) 225–246.
[129] S.J. Gladman, R.E. Ward, A.T. Michael-Titus, M.M. Knight, J.V. Priestley, The effect of mechanical strain or hypoxia on cell death in subpop-
ulations of rat dorsal root ganglion neurons in vitro, Neuroscience 171 (2) (2010) 577–587.
[130] N.C. Harrison, R.D. del Corral, B. Vasiev, Coordination of cell differentiation and migration in mathematical models of caudal embryonic axis
extension, PLoS ONE 6 (2011) e22700.
[131] E.M. Kearney, P.J. Prendergast, V.A. Campbell, Mechanisms of strain-mediated mesenchymal stem cell apoptosis, J. Biomech. Eng. 130 (6)
(2008) 061004.
[132] K. Kurpinski, J. Chu, C. Hashi, S. Li, Anisotropic mechanosensing by mesenchymal stem cells, Proc. Natl Acad. Sci. USA 103 (2006)
16095–16100.
II. MECHANOBIOLOGY AND TISSUE REGENERATION