Page 312 - Advances in Biomechanics and Tissue Regeneration
P. 312
310 15. COMPUTATIONAL SIMULATION OF CELL BEHAVIOR FOR TISSUE REGENERATION
[52] M.S. Cooper, R.E. Keller, Perpendicular orientation and directional migration of amphibian neural crest cells in DC electrical fields, Proc. Natl
Acad. Sci. USA 81 (1) (1984) 160–164.
[53] C.A. Erickson, R. Nuccitelli, Embryonic fibroblast motility and orientation can be influenced by physiological electric fields, J. Cell Sci. 98 (1)
(1984) 296–307.
[54] J. Lee, A. Ishihara, G. Oxford, B. Johnson, K. Jacobson, Regulation of cell movement is mediated by stretch-activated calcium channels, Nature
400 (6742) (1999) 382–386.
[55] E.K. Onuma, S.W. Hui, Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent, J. Cell
Sci. 106 (1) (1988) 2067–2075.
[56] N. Orida, J.D. Feldman, Directional protrusive pseudopodial activity and motility in macrophages induced by extracellular electric fields, Cell
Motil. 2 (3) (1982) 243–255.
[57] P.J.V. Haastert, P.N. Devreotes, Chemotaxis: signalling the way forward, Nat. Rev. Mol. Cell Biol. 5 (8) (2004) 626–634.
[58] O. Ilina, P. Friedl, Mechanisms of collective cell migration at a glance, J. Cell Sci. 122 (18) (2009) 3203–3208.
[59] R. Riahi, Y. Yang, D.D. Zhang, P.K. Wong, Advances in wound-healing assays for probing collective cell migration, J. Lab. Autom. 17 (1) (2012)
59–65.
[60] R. Nuccitelli, A role for endogenous electric fields in wound healing, Curr. Top. Dev. Biol. 58 (2003) 1–26.
[61] M. Ehrbar, A. Sala, P. Lienemann, A. Ranga, K. Mosiewicz, A. Bittermann, S.C. Rizzi, F.E. Weber, Elucidating the role of matrix stiffness in 3D
cell migration and remodeling, Biophys. J. 100 (2) (2011) 284–293.
[62] E.F. Keller, L.A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol. 26 (3) (1970) 399–415.
[63] E.F. Keller, L.A. Segel, Model for chemotaxis, J. Theor. Biol. 30 (2) (1971) 225–234.
[64] G. Oster, On the crawling of cells, J. Embryol. Exp. Morphol. 83 (1984) 329–364.
[65] G. Oster, A. Perelson, Cell spreading and motility: a model lamellipod, J. Math. Biol. 21 (1985) 383–388.
[66] D.C. Bottino, L.J. Fauci, A computational model of ameboid deformation and locomotion, Eur. Biophys. J. 27 (5) (1998) 532–539.
[67] D. Bottino, A. Mogilner, T. Roberts, M. Stewart, G. Oster, How nematode sperm crawl, J. Cell Sci. 115 (2) (2002) 367–384.
[68] H.G. Othmer, A. Stevens, Aggregation, blowup and collapse: the ABC’s of generalized taxis, SIAM J. Appl. Math. 57 (4) (1997) 1044–1081.
[69] T. Hofer, J.A. Sherratt, P.K. Maini, Dictyostelium discoideum: cellular self-organisation in an excitable biological medium, Proc. Biol. Sci.
259 (1356) (1995) 249–257.
[70] M.A.J. Chaplain, A.M. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor, IMA J. Math.
Appl. Med. Biol. 10 (3) (1993) 149–168.
[71] G.J. Pettet, H.M. Byrne, D.L.S. Mcelwain, J. Norbury, A model of wound-healing angiogenesis in soft tissue, Math. Biosci. 136 (1) (1996) 35–63.
[72] E. Palsson, A three-dimensional model of cell movement in multicellular systems, Futur. Gener. Comput. Syst. 17 (2001) 835–852.
[73] R. De, A. Zemel, S.A. Safran, Dynamics of cell orientation, Nat. Phys. 3 (2007) 655–659.
[74] D. Kabaso, R. Shlomovitz, K. Schloen, T. Stradal, N.S. Gov, Theoretical model for cellular shapes driven by protrusive and adhesive forces,
PLoS Comput. Biol. 7 (5) (2011) e1001127.
[75] Y. Ni, M.Y.M. Chiang, Cell morphology and migration linked to substrate rigidity, Soft. Matter. 3 (2007) 1285–1292.
[76] K.T. Kang, J.H. Park, Study on differentiation of mesenchymal stem cells by mechanical stimuli and an algorithm for bone fracture healing,
TERM 8 (4) (2011) 359–370.
[77] A.J. Stops, K.B. Heraty, M. Browne, F.J. O’Brien, P.E. McHugh, A prediction of cell differentiation and proliferation within a collagen-
glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow, J. Biomech. 43 (4) (2010) 618–626.
[78] M.P. Neilson, J.A. Mackenzie, S.D. Webb, R.H. Insall, Modeling cell movement and chemotaxis using pseudopod-based feedback, SIAM J. Sci.
Comput. 33 (3) (2011) 1035–1057.
[79] M. Yamao, H.N. Mail, S. Ishii, Multi-cellular logistics of collective cell migration, PLoS ONE 6 (12) (2011) e27950.
[80] R.F. van Oers, E.G. Rens, D.J. LaValley, C.A. Reinhart-King, R.M. Merks, Mechanical cell-matrix feedback explains pairwise and collective
endothelial cell behavior in vitro, PLoS Comput. Biol. 10 (8) (2014) e1003774.
[81] A. Ducrot, F.L. Foll, H.M. Magal, P.J. Pasquier, G.F. Webb, An in vitro cell population dynamics model incorporating cell size, quiescence, and
contact inhibition, Math. Models Methods Appl. Sci. 21 (1) (2011) 871–892.
[82] G. Gyllenberg, H. Heijmans, An abstract delay-differential equation modelling size dependent cell growth and division, SIAM J. Math. Anal.
18 (1) (1987) 74–88.
[83] J. Satulovsky, R. Lui, Y.L. Wang, Exploring the control circuit of cell migration by mathematical modeling, Biophys. J. 94 (9) (2008) 3671–3683.
[84] E. Hannezo, J. Prost, J.F. Joanny, Theory of epithelial sheet morphology in three dimensions, Proc. Natl Acad. Sci. 111 (1) (2014) 27–32.
[85] T.A. Ulrich, E.M.D.J. Pardo, S. Kumar, The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of
glioma cells, Cancer Res. 69 (10) (2009) 4167–4174.
[86] G. Albrecht-Buehler, Does blebbing reveal the convulsive flow of liquid and solutes through the cytoplasmic meshwork? Cold. Spring Harb.
Symp. Quant. Biol. 46 (1) (1982) 45–49.
[87] C.C. Cunningham, Actin polymerization and intracellular solvent flow in cell surface blebbing, J. Cell Sci. 129 (6) (1995) 1589–1599.
[88] G.T. Charras, J.C. Yarrow, M.A. Horton, L. Mahadevan, T.J. Mitchison, Non-equilibration of hydrostatic pressure in blebbing cells, Nature
435 (2005) 365–369.
[89] S.J. Han, N.J. Sniadecki, Simulations of the contractile cycle in cell migration using a bio-chemical-mechanical model, Comput. Methods Bio-
mech. Biomed. Eng. 14 (5) (2011) 459–468.
[90] D.R. Carter, P.R. Blenman, G.S. Beaupr e, Correlations between mechanical stress history and tissue differentiation in initial fracture healing,
J. Orthop. Res. 6 (5) (1988) 736–748.
[91] L.E. Claes, C.A. Heigele, Magnitudes of local stress and strain along bony surfaces predict the coarse and type of fracture healing, J. Biomech.
32 (3) (1999) 255–266.
[92] L. Geris, H.V. Oosterwyck, J.V. Sloten, J. Duyck, I. Naert, Assessment of mechanobiological models for the numerical simulation of tissue
differentiation around immediately loaded implants, Comput. Methods Biomech. Biomed. Eng. 6 (5–6) (2003) 277–288.
II. MECHANOBIOLOGY AND TISSUE REGENERATION