Page 98 - Advances in Biomechanics and Tissue Regeneration
P. 98
REFERENCES 93
[20] E.B. Rosero, R.M. Peshock, A. Khera, P. Clagett, H. Lo, C.H. Timaran, Sex, race, and age distributions of mean aortic wall thickness in a mul-
tiethnic population-based sample, J. Vasc. Surg. 53 (4) (2011) 950–957.
[21] J.D. Humphrey, G.A. Holzapfel, Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysm, J. Biomech. 45 (2012)
805–814.
[22] V. Alastrue, A. García, E. Peña, J.F. Rodríguez, M.A. Martínez, M. Doblar e, Numerical framework for patient-specific computational modelling
of vascular tissue, Int. J. Numer. Methods Biomed. Eng. 26 (2010) 35–51.
[23] S. Prakash, C.R. Ethier, Requirements for mesh resolution in 3D computational hemodynamics, J. Biomech. Eng. 123 (2001) 134–144.
[24] M.S. Olufsen, C.S. Peskins, W.Y. Kim, E.M. Pedersen, A. Nadim, J. Larsen, Numerical simulation and experimental validation of blood flow in
arteries with structured tree outflow conditions, Ann. Biomed. Eng. 28 (2000) 1281–1299.
[25] M.S. Olufsen, A structured tree outflow condition for blood flow in larger systemic arteries, A. J. Physiol. 276 (1999) H257–H268. Heart and
Circulatory Physiology.
[26] C.D. Murray, The physiological principle of minimum work, the vascular system and the cost of blood volume, Proc. Natl Acad. Sci. USA
12 (1926) 207–214.
[27] B.N. Steele, M.S. Olufsen, C.A. Taylor, Fractal network model for simulating abdominal and lower extremity blood flow during resting and
exercise conditions, Comput. Methods Biomech. Biomed. Eng. 10 (1) (2007) 37–51.
[28] A.S. Iberall, Anatomy and steady flow characteristics of the arterial system with an introduction to its pulsatile characteristics, Math. Biosci.
1 (1967) 375–385.
[29] M. Zamir, The Physics of Pulsatile Flow, in: Biological Physics Series, second ed., Springer, New York, NY, 2000. Chapter 3.
[30] U. Morbiducci, R. Ponzini, D. Gallo, C. Bignardi, G. Rizzo, Inflow boundary conditions for image-based computational hemodynamics: impact
of idealized versus measured velocity profiles in the human aorta, J. Biomech. 46 (1) (2013) 102–109.
[31] D. Gallo, U. G€ ulan, A. Di Stefano, R. Ponzini, B. L€ uthi, M. Holzner, U. Morbiducci, Analysis of thoracic aorta hemodynamics using 3D particle
tracking velocimetry and computational fluid dynamics, J. Biomech. 47 (12) (2014) 3149–3155.
[32] S. Pirola, Z. Cheng, O.A. Jarral, D.P. O’Regan, J.R. Pepper, T. Athanasiou, X.Y. Xu, On the choice of outlet boundary conditions for patient-
specific analysis of aortic flow using computational fluid dynamics, J. Biomech. 60 (2017) 15–21.
[33] A. Valencia, M. Villanueva, Unsteady flow and mass transfer in models of stenotic arteries considering fluid-structure interaction, Int. Commun.
Heat Mass Transfer 33 (1) (2006) 966–975.
[34] G.A. Holzapfel, Determination of material models for arterial walls from uniaxial extension tests and histological structure, J. Theor. Biol.
238 (2006) 290–302.
[35] A.J. Schriefl, G. Zeindlinger, D.M. Pierce, P. Regitnig, G.A. Holzapfel, Determination of the layer-specific distributed collagen fibre orientations
in human thoracic and abdominal aortas and common ilia arteries, J. R. Soc. Interface 9 (2012) 1275–1286.
[36] D.E. Kiousis, S.F. Rubinigg, M. Auer, G.A. Holzapfel, A methodology to analyze changes in lipid core and calcification onto fibrous cap vul-
nerability: the human atherosclerotic carotid bifurcation as an illustratory example, J. Biomech. Eng. 131 (2009). 121002-1.
[37] J. Donea, S. Giuliani, J.P. Halleux, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interaction,
Comput. Methods Appl. Mech. Eng. 33 (1982) 689–723.
[38] K.J. Bathe, H. Zhang, Finite element developments for general fluid flows with structural interactions, Int. J. Numer. Methods Eng. 60 (2004)
213–232.
[39] K.J. Bathe, H. Zhang, S. Ji, Finite element analysis of fluid flows fully coupled with structural interactions, Comput. Struct. 72 (1999) 1–16.
[40] D.N. Ku, D.P. Giddens, C.K. Zarins, S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between
plaque location and low and oscillating shear stress, Atherosclerosis 15 (1985) 293–302.
[41] A.M. Malek, S.L. Alper, S. Izumo, Hemodynamic shear stress and its role in atherosclerosis, J. Am. Med. Assoc. 282 (1999) 2035–2042.
[42] E.A. Murphy, F.J. Boyle, Reducing in-stent restenosis through novel stent flow field augmentation, Cardiovasc. Eng. Technol. 3 (2012) 353–373.
[43] P. Studinger, Z. Lenard, Z. Kovats, L. Kocsis, M. Kollai, Static and dynamic changers in carotid artery diameter in humans during strenuous
exercises, J. Physiol. 550 (2) (2003) 565–583.
[44] B.A. Haluska, L. Jeffriess, P.M. Mottram, S.G. Earlier, T.H. Marwick, A new technique for assessing arterial pressure wave forms and central
pressure with tissue Doppler, Cardiovasc. Ultrasound 5 (2007) 6.
[45] S. Tada, J.M. Tarbell, A computational study of flow in a compliant carotid bifurcation-stress phase angle correlation with shear stress, Ann.
Biomed. Eng. 33 (2005) 1202–1212.
[46] M.J. Thubrikar, Vascular Mechanics and Pathologies, second ed., Springer, New York, NY, 2007.
I. BIOMECHANICS