Page 126 - MarceAlgebra Demystified
P. 126

CHAPTER 6










                                                             Factoring












              Distributing Multiplication over Addition and


                                                                           Subtraction


            Distributing multiplication over addition (and subtraction) and factoring
            (the opposite of distributing) are extremely important in algebra. The dis-
            tributive law of multiplication over addition, aðb þ cÞ¼ ab þ ac, says that
            you can first take the sum ðb þ cÞ then the product (a times the sum of b
            and c) or the individual products ðab and ac) then the sum (the sum of ab and
            ac). For instance, 12ð6 þ 4Þ could be computed as 12ð6 þ 4Þ¼ 12ð6Þþ 12ð4Þ
            ¼ 72 þ 48 ¼ 120 or as 12ð6 þ 4Þ¼ 12ð10Þ¼ 120. The distributive law of
            multiplication over subtraction, aðb   cÞ¼ ab   ac, says the same about a
            product and difference.


                 Examples

                 7ðx   yÞ¼ 7x   7y                   4ð3x þ 1Þ¼ 12x þ 4

                                       2
                                                          3
                                 3
                  2
                                                                      4
                 x ð3x   5yÞ¼ 3x   5x y              8xyðx þ 4yÞ¼ 8x y þ 32xy  2
                                      3 3
                                                          2
                              2
                    2 3
                                               2 5
                                                       ffiffiffi
                 6x y ð5x   2y Þ¼ 30x y   12x y      p xðx þ 12Þ¼ x  2 p ffiffiffi  p ffiffiffi
                                                                       x þ 12 x
                       4
                   2
                                               2
                                 2 4
                 y ð y þ 6Þ¼ y y þ 6y     2  ¼ y þ 6y  2
                                                                                         113
                   Copyright 2003 The McGraw-Hill Companies, Inc.  Click Here for Terms of Use.
   121   122   123   124   125   126   127   128   129   130   131