Page 72 - Analog and Digital Filter Design
P. 72
Time and Frequency Response 69
I order I CI L2 C3 L4 C5 L6 C7 L8 C9 LlO
I 1.00000
2 1.36144 1.01565
3 1.57200 1.51790 0.93182
4 1.45345 1.91162 1.53954 0.92395
5 1.62994 1.73996 1.92168 1.51377 0.90343
6 1.46994 1.99084 1.79019 1.93593 1.51606 0.90305
7 1.64643 1.77716 2.03065 1.78918 1.92388 1.50337 0.89478
8 1.47565 2.00848 1.83056 2.05041 1.79671 1.92786 1.50504 0.89433
9 1.65329 1.78899 2.05701 1.83833 2.04815 1.79101 1.91988 1.49810 0.89112
10 1.47828 2.01478 1.84229 2.07746 1.84692 2.05357 1.79404 1.92217 1.49949 0.89185
Rs=O LI’ C2’ L3’ C4‘ L5‘ C6‘ L7’ C8’ L9’ C10’
c1 L2 C3 LA C5 L6 C7 L8 C9 L10
1 .ooO0o
1.30223 1.19145
1.65199 1.45972 1.10778
1.37686 2.05105 1.51740 1.12742
1.72155 1.64455 2.06119 1.49297 1.10354
1.38984 2.11627 1.70474 2.09336 1.50789 1.11259
1.74142 1.67712 2.15585 1.70229 2.07901 1.49453 1.10192
8 1.39431 2.13071 1.73338 2.18479 1.71600 2.09151 1.50218 1.10717
9 1.74970 1.68810 2.17984 1.73916 2.18069 1.70937 2.08153 1.49435 1.10119
10 1.39636 2.13592 1.74170 2.20597 1.75099 2.19124 1.71609 2.08873 1.49916 1.10462
Rs = 0 L1’ C2’ L3’ C4‘ L5’ C6‘ L7’ C8’ L9’ CIO’
Table 2.20
Normalized 1 dB Chebyshev Element Values, Rs = or 0
Inverse Chebyshev Response
This response has a smooth passband and nulls in the stopband. This combi-
nation is a compromise that gives a reasonably sharp roll-off in the frequency
response and a reasonably low overshoot in its impulse response. For any
given frequency response, the filter order required for an Inverse Chebyshev
will be the same as required for a Chebyshev filter. The advantage of using the