Page 131 - Applied Numerical Methods Using MATLAB
P. 131

120    INTERPOLATION AND CURVE FITTING
           matches the first two data points (x 0 ,y 0 ) and (x 1 ,y 1 ). We need to solve the two
           equations

                                n 1 (x 0 ) = a 0 + a 1 (x 0 − x 0 ) = y 0
                                n 1 (x 1 ) = a 0 + a 1 (x 1 − x 0 ) = y 1

           to get
                                          y 1 − a 0  y 1 − y 0
                          a 0 = y 0 ,  a 1 =     =        ≡ Df 0         (3.2.3)
                                          x 1 − x 0  x 1 − x 0
           Starting from this first-degree Newton polynomial, we can proceed to the second-
           degree Newton polynomial

             n 2 (x) = n 1 (x) + a 2 (x − x 0 )(x − x 1 ) = a 0 + a 1 (x − x 0 ) + a 2 (x − x 0 )(x − x 1 )
                                                                         (3.2.4)
           which, with the same coefficients a 0 and a 1 as (3.2.3), still matches the first
           two data points (x 0 ,y 0 ) and (x 1 ,y 1 ), since the additional (third) term is zero
           at (x 0 ,y 0 ) and (x 1 ,y 1 ). This is to say that the additional polynomial term does
           not disturb the matching of previous existing data. Therefore, given the addi-
           tional matching condition for the third data point (x 2 ,y 2 ), we only have to
           solve

                      n 2 (x 2 ) = a 0 + a 1 (x 2 − x 0 ) + a 2 (x 2 − x 0 )(x 2 − x 1 ) ≡ y 2

           for only one more coefficient a 2 to get

                                                       y 1 − y 0
                                              y 2 − y 0 −     (x 2 − x 0 )
                         y 2 − a 0 − a 1 (x 2 − x 0 )  x 1 − x 0
                    a 2 =                   =
                          (x 2 − x 0 )(x 2 − x 1 )  (x 2 − x 0 )(x 2 − x 1 )
                                           y 1 − y 0
                         y 2 − y 1 + y 1 − y 0 −  (x 2 − x 1 + x 1 − x 0 )
                                           x 1 − x 0
                       =
                                     (x 2 − x 0 )(x 2 − x 1 )
                         y 2 − y 1  y 1 − y 0
                                −
                         x 2 − x 1  x 1 − x 0  Df 1 − Df 0  2
                       =                  =           ≡ D f 0            (3.2.5)
                              x 2 − x 0       x 2 − x 0
              Generalizing these results (3.2.3) and (3.2.5) yields the formula to get the Nth
           coefficient a N of the Newton polynomial function (3.2.1) as

                                    D N−1 f 1 − D N−1  f 0  N
                              a N =                 ≡ D f 0              (3.2.6)
                                        x N − x 0
           This is the divided difference, which can be obtained successively from the
           second row of Table 3.1.
   126   127   128   129   130   131   132   133   134   135   136