Page 235 - Applied Numerical Methods Using MATLAB
P. 235

224    NUMERICAL DIFFERENTIATION/ INTEGRATION
                  h         1      1             h  2
                                                       3
                                       2
                                3
                  p 2 (t) dt =  c 1 t + c 2 t + c 3 t     =  c 1 h + 2c 3 h
                −h          3      2           −h  3
                            2h     f k+1 + f k−1         h
                         =                 − f k + 3f k  =  (f k−1 + 4f k + f k+1 )
                            3        2                   3
           This is the Simpson integration formula (5.5.4).
              Now, as a preliminary work toward diagnosing the errors of the above inte-
           gration formulas, we take the Taylor series expansion of the integral function
                      x
                                                 (2)
                                                                (3)


             g(x) =    f(t) dt  with g (x) = f(x), g (x) = f (x), g (x) = f  (2) (x)
                    x k
                                                                         (5.5.6)
           about the lower bound x k of the integration interval to write
                                       1                 1
                                          (2)         2     (3)         3
            g(x) = g(x k ) + g (x k )(x − x k ) + g (x k )(x − x k ) +  g (x k )(x − x k ) +· · ·
                                       2                 3!
           Substituting Eq. (5.5.6) together with x = x k+1 and x k+1 − x k = h into this yields
                                     2        3         4          5
                                   h         h  (2)    h   (3)    h  (4)
             x k+1

                f(x) dx = 0 + hf (x k ) +  f (x k ) +  f  (x k ) +  f  (x k ) +  f  (x k ) +· · ·
                                    2        3!        4!         5!
            x k
                                                                         (5.5.7)
              First, for the error analysis of the midpoint rule, we substitute x k−1 and −h =
           x k−1 − x k in place of x k+1 and h in this equation to write
                                     2        3         4          5
             x k−1                 h         h  (2)    h   (3)    h  (4)

                f(x) dx = 0 − hf (x k ) +  f (x k ) −  f  (x k ) +  f  (x k ) −  f  (x k ) +· · ·
                                    2        3!        4!         5!
            x k
           and subtract this equation from Eq. (5.5.7) to write
                 x k+1         x k−1          x k+1         x k

                    f(x) dx −      f(x) dx =     f(x) dx +     f(x) dx
                x k            x k           x k           x k−1
                                            2h  (2)     2h   (4)
                                              3           5
                      x k+1
                 =       f(x) dx = 2hf (x k ) +  f  (x k ) +  f  (x k ) +· · · (5.5.8)
                                            3!           5!
                     x k−1
           Substituting x k and x mk = (x k + x k+1 )/2 in place of x k−1 and x k in this equation
           and noting that x k+1 − x mk = x mk − x k = h/2, we obtain
                                                  3
                                                 h    (2)
                         x k+1
                            f(x) dx = hf (x mk ) +   f  (x mk )
                                               3 × 2 3
                        x k
                                             h 5      (4)
                                      +              f  (x mk ) +· · ·
                                        5 × 4 × 3 × 2 5
                x k+1
                                       3             5
                                      h   (2)       h    (4)              3
                   f(x) dx − hf (x mk ) =  f  (x mk ) +  f  (x mk ) +· · · = O(h )
                                      24           1920
               x k
                                                                         (5.5.9)
   230   231   232   233   234   235   236   237   238   239   240