Page 237 - Applied Numerical Methods Using MATLAB
P. 237

226    NUMERICAL DIFFERENTIATION/ INTEGRATION
           will change if the segment width h is halved to h/2. Noting that, from Eq. (5.5.11),

                                                      h   (4)
                       x k+1
                                                       5
              E S (h) =   f(x) dx − I S (x k−1 ,x k+1 ,h) ≈−  f  (c)(c ∈ [x k−1 ,x k+1 ])
                                                      90
                      x k−1
                h       x k+1                    h
             E S ( ) =    f(x) dx − I S x k−1 ,x k+1 ,
                 2                               2
                      x k−1

                       x k                    h      x k+1
                   =      f(x) dx − I S x k−1 ,x k ,  +  f(x) dx
                                              2
                      x k−1                         x k
                                  h

                     − I S x k ,x k+1 ,  (c ∈ [x k−1 ,x k+1 ])
                                   2
                        (h/2) 5  (4)   1
                   ≈−2        f  (c) =   E S (h)
                          90           16
           we can express the change of the error caused by halving the segment width
           as

                               h                                    h
                   E S (h) − E S
                                     = I S (x k−1 ,x k+1 ,h) − I S x k−1 ,x k+1 ,

                               2                                    2
                                      15
                                                        h
                                   ≈    |E S (h)|≈ 15 E S               (5.5.12)

                                      16                 2
           This suggests the error estimate of numerical integration by Simpson’s rule as
                              1

                     h                                          h
                 E S
                           ≈       I S (x k−1 ,x k+1 ,h) − I S x k−1 ,x k+1 ,     (5.5.13)
                     2      2 − 1                               2
                             4
           Also for the trapezoidal rule, similar result can be derived:
                              1

                     h                                          h
                E T               I T (x k−1 ,x k+1 ,h) − I T
                           ≈                          x k−1 ,x k+1 ,     (5.5.14)
                     2     2 − 1                                2
                            2
           5.6  TRAPEZOIDAL METHOD AND SIMPSON METHOD
           In order to get the formulas for numerical integration of a function f(x) over
           some interval [a, b], we divide the interval into N segments of equal length
           h = (b − a)/N so that the nodes (sample points) can be expressed as {x = a +
           kh, k = 0, 1, 2,...,N}. Then we have the numerical integration of f(x) over
           [a, b] by the trapezoidal rule (5.5.3) as
              b         N−1    x k+1

               f(x) dx =         f(x) dx
            a
                        k=0  x k
                        h
                      ∼
                      =   {(f 0 + f 1 ) + (f 1 + f 2 ) +· · · + (f N−2 + f N−1 ) + (f N−1 + f N )}
                        2
   232   233   234   235   236   237   238   239   240   241   242