Page 241 - Applied Numerical Methods Using MATLAB
P. 241

230    NUMERICAL DIFFERENTIATION/ INTEGRATION
           estimate of the integral. This sequential procedure of Romberg integration is cast
           into the MATLAB routine “rmbrg()”.
              Before closing this section, we test and compare the trapezoidal method
           (“trpzds()”), Simpson method (“smpsns()”), and Romberg integration
           (“rmbrg()”) by trying them on the following integral


















                4                                       4     4
                400x(1 − x)e −2x  dx = 100 −2e −2x x(1 − x)  +  2e −2x (1 − 2x) dx

              0                                        0   0
                                       4             4
                                                             4

                 = 100 −2e  −2x x(1 − x)  − e −2x (1 − 2x)  − 2  e −2x  dx


                                       0             0
                                                           0
                             4

                 = 200x e     = 3200e −8  = 1.07348040929                (5.7.5)
                        2 −2x
                             0
           Here are the MATLAB statements for this job listed together with the run-
           ning results.
            >>f = inline(’400*x.*(1 - x).*exp(-2*x)’,’x’);
            >>a=0;b=4;N=80;
            >>format short e
            >>true_I = 3200*exp(-8)
            >>It = trpzds(f,a,b,N), errt = It-true_I %trapezoidal
              It = 9.9071e-001, errt = -8.2775e-002
            >>Is = smpsns(f,a,b,N), errs = Is-true I %Simpson
              INTfs = 1.0731e+000, error = -3.3223e-004
            >>[IR,R,err,N1] = rmbrg(f,a,b,.0005), errR = IR - true I %Romberg
              INTfr = 1.0734e+000, N1 = 32
              error = -3.4943e-005
           As expected from the fact that the errors of numerical integration by the trape-
                                                             4
                                                   2
           zoidal method and Simpson method are O(h ) and O(h ), respectively, the
           Simpson method presents better results (with smaller error) than the trapezoidal
   236   237   238   239   240   241   242   243   244   245   246