Page 290 - Applied Numerical Methods Using MATLAB
P. 290

VECTOR DIFFERENTIAL EQUATIONS  279
            we can take the inverse Laplace transform of Eq. (6.5.5) to write

                                                        t
              x(t) = φ(t)x(0) + φ(t) ∗ Bu(t) = φ(t)x(0) +  φ(t − τ)Bu(τ) dτ  (6.5.8)
                                                      0

            For Eq. (6.5.3), we use Eq. (6.5.6) to find

                         −1        −1
                 φ(t) = L {[sI − A] }

                                                 −1                    −1
                               s  0     0   1           −1   s   −1
                         −1
                     = L             −               = L
                               0  s     0 −1                 0 s + 1

                               1     s + 1  1
                         −1
                     = L
                            s(s + 1)   0    s
                           
                                  −t
                              1/s  1/s − 1/(s + 1)     1  1 − e
                         −1
                     = L                           =         −t          (6.5.9)
                               0     1/(s + 1)         0    e
            and use Eqs. (6.5.8), (6.5.9), and u(t) = u s (t) = 1 ∀ t ≥ 0toobtain
                                               t
                                  −t                     −(t−τ)
                          1  1 − e      1         11 − e         0
                   x(t) =       −t         +            −(t−τ)      1 dτ
                          0    e       −1         0    e         1
                                              0
                             −t                  t           −t
                            e       τ − e  −(t−τ)    t − 1 + 2e
                       =     −t  +     −(t−τ)     =         −t          (6.5.10)
                          −e          e               1 − 2e
                                                0
              Alternatively, we can directly take the inverse transform of Eq. (6.5.5) to get
                              −1              −1
                X(s) = [sI − A] {x(0) + [sI − A] BU(s)}
                                                       1
                          1      s + 11   
   1
                                                    0
                    =                           +
                       s(s + 1)  0    s     −1      1  s
                                                                 2
                          1       s + 1  1      s        1       s + 1
                    =                              =                    (6.5.11)
                                                      2
                        2
                       s (s + 1)  0    s   −s + 1     s (s + 1)  s(1 − s)
                         2
                        s + 1     1   1     2                     −t
               X 1 (s) =       =    −   +      ,  x 1 (t) = t − 1 + 2e  (6.5.12a)
                        2
                       s (s + 1)  s 2  s  s + 1
                        1 − s    1    2                  −t
               X 2 (s) =      =   −      ,  x 2 (t) = 1 − 2e           (6.5.12b)
                       s(s + 1)  s   s + 1
            which conforms with Eq. (6.5.10).
              The MATLAB program “nm651_2.m” uses a symbolic computation routine
            “ilaplace()” to get the inverse Laplace transform, uses “eval()”to evaluate
   285   286   287   288   289   290   291   292   293   294   295