Page 199 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 199

176  BIOMECHANICS OF THE HUMAN BODY


                                                         Myosin head

                                                             Actin
                                            (+)               (–)
                                                                  Head dissociates
                                 1    Nucleotide
                                                            ATP   from filament






                                                                  Head pivots and binds
                                 2    Hydrolysis                  a new actin subunit



                                                        ADP • P i



                                                                  Head pivots and moves
                                      release
                                 3   P i
                                                P i               filament (power stroke)





                                  4   ADP release
                                              ADP






                                FIGURE 7.20  Schematic diagram illustrating the mechanism of force develop-
                                ment in muscle. [Modified from Lodish et al. (2000).]





                         For the actuator shown in Fig. 7.21, musculotendon dynamics is described by a single, nonlinear,
                                                                    MT                      MT
                       differential equation that relates musculotendon force (F  ), musculotendon length (l  ),
                       musculotendon shortening velocity (v  MT ), and muscle activation (a  m ) to the time rate of change
                       in musculotendon force:
                                                                      m
                                           F   MT  =  f F (  MT  l ,  MT  v ,  MT  a ,  m )  0  ≤  a ≤1  (7.7)
                         Given values of F  MT  l ,  MT  v ,  MT , and  a m  at one instant in time, Eq. (7.7) can be integrated numer-
                       ically to find musculotendon force at the next instant.
   194   195   196   197   198   199   200   201   202   203   204