Page 77 - Circuit Analysis II with MATLAB Applications
P. 77

Energy in L and C at Resonance


         2.6 Energy in L and C at Resonance

         For a series RLC  circuit we let
                                                              dv
                                                                C
                                             i =  I cos Zt =  C---------
                                                  p
                                                              dt
         Then,
                                                      I
                                                       p
                                                v C  =  -------- sin Zt
                                                      ZC
         Also,
                                              1  2    1  2    2
                                        W =   --Li =  --LI cos  Zt                             (2.22)
                                              -
                                                      -
                                          L
                                                         p
                                                      2
                                              2
         and
                                                         2
                                              1   2   1  I p  2
                                       W C  =  --Cv =  ------------ sin  Zt                    (2.23)
                                              -
                                                      -
                                                      2
                                              2
                                                         2
                                                       Z C
         Therefore, by (2.22) and (2.23), the total energy W T  at any instant is
                                                                1
                                                 -
                                                --I
                               W =   W +  W C  =  1 2  Lcos  2 Zt +  ---------- sin 2 Zt       (2.24)
                                T
                                       L
                                                   p
                                                2
                                                                2
                                                               Z C
         and this expression is true for any series circuit, that is, the circuit need not be at resonance. How-
         ever, at resonance,
                                                          1
                                                  Z L =  ----------
                                                   0
                                                         Z C
         or                                               0
                                                         1
                                                   L =  ----------
                                                         2
                                                       Z C
                                                         0
         By substitution into (2.24),
                                   -
                                                                      ---I ----------
                                                              --I L =
                                                              -
                            W =   1 2      2 Z t +  Lsin 2 Z t =  1 2  1 2 1                   (2.25)
                                  --I Lcos>
                                                         @
                                                                        p
                                    p
                                                                p
                              T
                                             0
                                                        0
                                  2
                                                                          2
                                                                      2
                                                              2
                                                                         Z C
                                                                          0
         and (2.25) shows that the total energy W T  is dependent only on the circuit constants  ,   and res-
                                                                                        LC
         onant frequency, but it is independent of time.
         Next, using the general definition of   we get:
                                           Q
                                                                           2
                                                                       e

                                  Maximum Energy Stored                12 I L        f L
                                                                           p
                                                                                     0
                       Q 0S  =  2S------------------------------------------------------------------------------ =  2S-------------------------------- =  2S-------
                                                                         2
                                Energy Dissipated per Cycle
                                                                                     R
                                                                    12 I Rfe

                                                                     e

                                                                         p
                                                                              0
        Circuit Analysis II with MATLAB Applications                                            2-11
        Orchard Publications
   72   73   74   75   76   77   78   79   80   81   82