Page 299 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 299

288                               STATE ESTIMATION IN PRACTICE

            turns into:

                 T
                          T
                                               T
            BðijiÞ BðijiÞ¼ B ðiji   1ÞBðiji   1Þ  B ðijÞBðiji   1ÞH T
                               T                  T      1   T

                            HB ðiji   1ÞBðiji   1ÞH þC v Þ HB ðiji   1ÞBðiji   1Þ
                          T
                                               T
                       ¼ B ðiji   1ÞBðiji   1Þ  B ðiji   1ÞM
                              T            T
                                         1
                            M M þ C v    M Bðiji   1Þ
                                                       1
                          T                 T            T
                       ¼ B ðiji   1Þ I   MM M þ C v    M    Bðiji   1Þ
                                                                       ð8:41Þ
                    def         T
            where M ¼ B(iji   1)H is an M   N matrix.
              If we would succeed in finding a Cholesky factor of:
                                         T            T
                                                    1
                                 I   MM M þ C v     M                  ð8:42Þ
            then we would have an update formula entirely expressed in Cholesky
            factors. Unfortunately, in the general case it is difficult to find such a
            factor.
              For the special case of only one measurement, N ¼ 1, a factorization
            is within reach. If N ¼ 1, then H becomes a row vector h. The matrix M
                                                                  T
            becomes an M dimensional (column) vector m ¼ B(iji   1)h . Substitu-
            tion in (8.42) yields:

                                                    1
                                          T     2    T
                                  I   mm m þ    v   m                  ð8:43Þ
             2
              is the variance of the measurement noise.
             v
                                                                      2
                                                    T
                                                                          2
              Expression (8.43) is of the form I    mm with   ¼ 1/(kmk þ   ).
                                                                          v
            Such a form is called a symmetric elementary matrix. The form can be
            easily factored by:
                        T

                I    mm ¼ I    mm    T    T   I    mm T
                             q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi !
                                        2
                                    kk
                          1    1     m        1               2 v      ð8:44Þ
                 with   ¼          2      ¼     2  1        2
                                                         m þ
                                m
                                             m
                               kk           kk          kk      2 v
            Substitution of (8.44) in (8.41) yields:
                             T
                   T

              BðijiÞ BðijiÞ¼ B ðiji   1Þ I    mm T    T   I    mm T    Bðiji   1Þ  ð8:45Þ
   294   295   296   297   298   299   300   301   302   303   304