Page 176 - Computational Statistics Handbook with MATLAB
P. 176

Chapter 5: Exploratory Data Analysis                            163





















                                       0




                                         1      2      3      4      5      6      7
                               GU
                               U
                              F F F FI  II IG URE GU 5.3  RE RE RE 5.3 7  7 7 7
                                  5.3
                                  5.3
                               G
                              This shows the parallel coordinate representation for the 4-D point (1,3,7,2).
                                plot(c,0:3,c,0:3,'*')
                                ax = axis;
                                axis([ax(1) ax(2) -1 4 ])
                                set(gca,'ytick',0)
                                hold off


                              If we plot observations in parallel coordinates with colors designating
                             what class they belong to, then the parallel coordinate display can be used to
                             determine whether or not the variables will enable us to separate the classes.
                             This is similar to the Andrews curves in Example 5.23, where we used the
                             Andrews curves to view the separation between two species of iris. The par-
                             allel coordinate plot provides graphical representations of multi-dimensional
                             relationships [Wegman, 1990]. The next example shows how parallel coordi-
                             nates can display the correlation between two variables.

                             Example 5.25
                             We first generate a set of 20 bivariate normal random variables with correla-
                             tion given by 1. We plot the data using the function called csparallel to
                             show how to recognize various types of correlation in parallel coordinate
                             plots.

                                % Get a covariance matrix with correlation 1.
                                covmat = [1 1; 1 1];


                            © 2002 by Chapman & Hall/CRC
   171   172   173   174   175   176   177   178   179   180   181