Page 299 - Computational Statistics Handbook with MATLAB
P. 299

288                        Computational Statistics Handbook with MATLAB




                                                        Kernel Estimate for Iris Data




                                        0.4

                                        0.3

                                        0.2

                                        0.1



                                              4
                                                                                      8
                                                    3                            7
                                                                            6
                                                          2       4    5
                                            Sepal Width                   Sepal Length

                              FI F IG URE G 8.  RE 8. 1  11 1
                               U
                               GU
                                     1
                              F F II  GU  RE RE 8. 8.  1 1 1
                              This is the product kernel density estimate for the sepal length and sepal width of the  iris
                              data. These data contain all three species. The presence of peaks in the data indicate that
                              two of the species might be distinguishable based on these two variables.


                                      2
                                     ..
                               TA  BL  L LE L 8 E8  .2 2
                                      2
                               TA
                               B
                               TA
                                 B
                                 B
                               TA
                                   .
                                   E8
                                   E8
                               Summary of Univariate Probability Density Estimators and the Normal
                               Reference Rule for the Smoothing Parameter
                                  Method             Estimator            Normal Reference Rule
                               Histogram                                               ⁄
                                                                             *
                                                    ˆ      v k               h Hist =  3.5σn  – 13
                                                    f Hist x() =  ------
                                                           nh
                                                      x in B k
                               Frequency
                                                                                       ⁄
                                                                             *
                                              ˆ      1   x ˆ  1   x ˆ    h FP =  2.15σn –  15
                                                        -
                                                               -
                                                             -
                                                     -
                                                       h 
                               Polygon        f FP x() =   -- –  -- f k +   -- +  h   1
                                                               -- f k +
                                                             2
                                                     2
                                                    B K ≤ x ≤  B k +  1
                               Kernel                    n                   *        – 15 ⁄
                                                             --------------
                                                ˆ      1     x –  X i      h Ker =  1.06σn  ;
                                                f Ker x() =  ------ ∑  K
                                                       nh     h          K  is the normal kernel.
                                                         i =  1
                            © 2002 by Chapman & Hall/CRC
   294   295   296   297   298   299   300   301   302   303   304