Page 51 - Computational Statistics Handbook with MATLAB
P. 51

Chapter 2: Probability Concepts                                  37


                                                         0;            x ≤  0
                                                   ,
                                               (
                                                        
                                                 ;
                                              Fx λ t) =    1  λx  t –  1 – y              (2.39)
                                                              ∫
                                                         ---------- y  e d y;  x >  0 .
                                                          Γ t()
                                                        
                                                              0
                             Equation 2.39 can be evaluated easily in MATLAB using the gam-
                             mainc(λ*  x,t) function, where the above notation is used for the argu-
                             ments.
                             Example 2.7
                             We plot the gamma probability density function for  λ =  t =  1   (this should
                             look like the exponential),  λ =  t =  2  , and  λ =  t =  3  . You can use the
                             MATLAB Statistics Toolbox function gampdf(x,t,1/λ) or the function
                             csgammp(x,t,λ).
                                % First get the domain over which to
                                % evaluate the functions.
                                x = 0:.1:3;
                                % Now get the functions values for
                                % different values of lambda.
                                y1 = gampdf(x,1,1/1);
                                y2 = gampdf(x,2,1/2);
                                y3 = gampdf(x,3,1/3);
                                % Plot the functions.
                                plot(x,y1,'r',x,y2,'g',x,y3,'b')
                                title('Gamma Distribution')
                                xlabel('X')
                                ylabel('f(x)')
                             The resulting curves are shown in Figure 2.8.





                             Chi ChiChi Chi-  -SSquarequare
                                -- SSquarequare
                                                                        ⁄
                                                                                 ν
                             A gamma distribution where λ =  0.5   and t =  ν 2  , with   a positive inte-
                                                                                 ν
                                                                          2
                             ger, is called a chi-square distribution (denoted as χ ν  ) with   degrees of free-
                             dom. The chi-square distribution is used to derive the distribution of the
                             sample variance and is important for goodness-of-fit tests in statistical anal-
                             ysis [Mood, Graybill, and Boes, 1974].
                              The probability density function for a chi-square random variable with  ν
                             degrees of freedom is
                                                              ⁄
                                                             ν 2
                                                           1       –  1 --x
                                                                      -
                                                      1
                                                                 ⁄
                                                           --
                                                           -
                                            (
                                              ;
                                           f x ν) =  ------------------   x  ν 2 –  1 e  2  ;  x ≥  . 0  (2.40)
                                                           2
                                                       ⁄
                                                   Γν 2)  
                                                     (
                             © 2002 by Chapman & Hall/CRC
   46   47   48   49   50   51   52   53   54   55   56