Page 335 - Design of Reinforced Masonry Structures
P. 335

COLUMNS                          5.55

           The strain in the tensile reinforcement is equal to yield strain, therefore
                               T = A f  = 1.2(60) = 72 kips
                                   s y
           Equilibrium in the vertical direction requires that ΣF  = 0. Thus,
                                                 y
            C  + C  – T – P = 0                               (5.39 repeated)
             s
                m
                      P = C  + C  – T = 54.46 + 217 – 72.0 = 199.5 kips
                             m
                          s
                     P  = PC  = (199.5)(0.793) = 158.2 kips
                           P
                      n
                    fP  = 0.9(158.2) =142.4 kips
                      n
           Taking moments of C , C , and T about the centroidal axis of the column, we obtain,
                          s
                             m
                                          h
                       h
                                ha
                                 −
                                      Td −
                                    +
                        −
                         d′ +
                M =  C s( )  C m( ) ( )
                  n
                       2        2 2       2
                                                               .
                           .
                                          .
                                              −
                   = 54 46 ( 23 625  − − 3 8 . ) + 217 ( 23 625 86 . ) (  .  −  23 625 ))
                      .
                                                  + 72 19 825
                            2              2    2              2
                                  +
                          +
                       .
                               .
                   = 436 36 1630 21 576 9
                                      .
                        .
                   = 2643 47k-in. = 220 3k--ft
                                   .
                                    .
                           .
               φM = 0 9 2643 47)  = 2379 1  k-in. = 198 3.  k-inn.
                     .(
                  n
           Point 12: Zero axial load: fP  = 0
                                n
             In the absence of an axial load, the column behaves as a doubly reinforced beam. The
           location of neutral axis in this case is determined from Eq. (5.34):
                                          f A
                                              )c
                (.064 ′ fb )c  2  + ( ′ A ε  E  s  − A f  −  . 080 ′′ − ′ A εε Ed′ = 0  (5.34 repeated)
                                   s y
                                                  s m
                    m
                            s m
                                             s
                                                     s
                                           m
           Equation (5.34) is a quadratic of the form: Ax2 + Bx + C = 0, which can be solved for
           x [= c in Eq. (5.34)]:
                                     −±   B − 4 AC
                                            2
                                      B
                                   x =
                                          2 A
           where x =  c
                 A = 0 64.  f b ′ = 0 64 2 0 15 625.  ( . )(  .  )  = 2 0 kkips/in.
                        m
                 B =  A′ε  E −  A f − 080.  f A ′′
                     sm  s  s y     m  s
                   = 12000.( .  2 25 29 000) − 1 2 60) −  0 80 2 0 1 2)
                               ,
                                                (
                                             .
                            )(
                                                     .
                                                 .
                                      .
                                        (
                                                   )(
                   =  13 08    kipps
                      .
                 C =  A′ε  E d′ = 1 2 0 0025 29 000 3 8.( .  )(  ,  )(.)  = 330..6 k-in.
                     sm  s
           Substituting in the above equation, we obtain
                                   2
                                 20c  + 13.08c – 330.6 = 0
           whence
                                 .
                                                  )(
                                               (
                                         .
                            c =  −13 08  ± ( 13 08) 2  + 4 20 330 6 . )
                                         220)
                                          (
                             =+375in..− 441.  in.
                                .
   330   331   332   333   334   335   336   337   338   339   340