Page 294 - Distributed model predictive control for plant-wide systems
P. 294

268                           Distributed Model Predictive Control for Plant-Wide Systems



                                                 2
                 m ̇v = u −(m c + m c v + m c v )− k x
                   1 1   1    1 01   1 11 1  i 21 1   1 1
                                               2
                  m ̇v = u −(m c + m c v + m c v )+ k i−1 i−1  − k x , i = 2, … , n − 1
                                                      x
                             i 0i
                   i i
                                    i 1i i
                         i
                                                            i i
                                           i 2i i
                                                                                 (12.6)
                                                 2
                 m ̇v = u −(m c + m c v + m c v )+ k  n-1 n-1
                                                        x
                         n
                                             n 2n n
                                     n 1n n
                              n 0n
                   n n
                    ̇ x = v − v i+1 , i = 1, … , n − 1
                     i
                        i
             Assuming that the equilibrium state has a cruising speed
                                                     e
                                        e
                                            e
                                       v = v = ··· = v = v
                                        1   2        n   r
                                                                                 (12.7)
                                            e
                                        e
                                                     e
                                       ̇ v = ̇v = ··· = ̇v = 0
                                        1   2        n
                       e
             The inputs u at the equilibrium point can be written as
                       i
                                                      e2
                                e
                                               e
                               u = m c + m c v + m c v , i = 1, … , n            (12.8)
                                i    i 0i  i 1i i  i 2i i
                                                          e
                                               e
                                    e
                               x = x +   x , v = v +   v , u = u +   u i         (12.9)
                                i
                                                    i
                                           i
                                         i
                                                      i
                                               i
                                    i
                                                          i
             Let
                               x =[  v ,  v , … ,  v ,  x ,  x , … ,  x  ] T
                                     1   2      n  1   2     n−1
                               u =[  u ,  u , … ,  u ] T                        (12.10)
                                     1
                                                n
                                         2
             We can get the following linearized equations by substituting (12.9) into (12.6).
                                            ̇ x = Ax + Bu
                                                                                (12.11)
                                           y = Cx
           where
                    [         ]
                 A =  A 11  A 12  ,  A  =−diag(c + c v , … , c + c v ), A  =   
                     A     A       11        11   21 r    1n   2n r  22   (n−1)×(n−1)
                       21   22
                     ⎡ k 1                          ⎤
                      −       0    ···   0       0
                       m 1
                     ⎢                              ⎥
                     ⎢                              ⎥
                       k 1    k 2
                     ⎢      −      ···   0       0  ⎥
                     ⎢ m 2    m 2                   ⎥
               A   =  ⎢  ⋮    ⋮    ⋱     ⋮       ⋮  ⎥
                 12
                     ⎢                  k       k   ⎥
                     ⎢ 0     ···   0     n−2  −  n−1  ⎥
                     ⎢                  m n−1   m n−1  ⎥
                     ⎢                         k n−1  ⎥
                     ⎢ 0     ···   0     0          ⎥
                     ⎣                          m n ⎦
                     ⎡1  −1   0   ···  0   0 ⎤
                                                     [      ]
                     ⎢0   1   −1  ···  0   0 ⎥          B 11
               A 21  =  ⎢ ⋮  ⋮  ⋮  ⋱   ⋮   ⋮  ⎥ ,  B =       ,
                     ⎢                       ⎥         (n−1)×n
                     ⎣0   0   0   ···  1   −1⎦
                        (              )
                           1  1      1         [              ]
               B 11  = diag  ,  , … ,   ,  C = I n×n     (n−1)×(n−1)
                          m 1  m 2  m n
   289   290   291   292   293   294   295   296   297   298   299