Page 297 - Distributed model predictive control for plant-wide systems
P. 297

High-Speed Train Control with Distributed Predictive Control           271


                          ⎡ ̇ z i−1  ⎤  ⎡A i−1i−1  A i−1i      ⎤  ⎡A i−1i−2        ⎤
                     Z =  ⎢  ̇ z  ⎥ =  ⎢  A  A   A    ⎥ Z +  ⎢              Z
                      ̇
                                                                         ⎥
                      ni    i       ii−1    ii     ii+1  ni                 ni−1
                          ⎢   ⎥  ⎢                    ⎥     ⎢            ⎥
                          ⎣ ̇ z i+1⎦  ⎣   A i+1i  A i+1i+1⎦  ⎣             ⎦
                            ⎡             ⎤      ⎡B i−1i−1           ⎤ ⎡u i−1  ⎤
                          +               ⎥  Z ni+1 +  ⎢      B ii      ⎥ ⎢  u i  ⎥
                            ⎢
                            ⎣         A i+1i+2⎦ ⎥  ⎢          B i+1i+1⎦ ⎣ u i+1⎦ ⎥
                            ⎢
                                                                    ⎥ ⎢
                                                 ⎣
                          i = 2, … , n − 1                                       (12.19)
                          [      ]  [             ]
                     Z =   ̇ z n−1n−1  =  A n−1n−1  A n−1n  Z
                     ̇
                      nn     ̇ z nn   A nn−1   A nn  nn
                            [          ]       [           ][  ]
                          +  A n−1n−2  0  Z  +  B n−1      u n−1                 (12.20)
                                0     0  nn−1         B    u
                                                       n    n
             where Z  is state variable of the ith neighborhood subsystem in this system. Equations
                    ni
             (12.18)–(12.20) can be simplified as follows:
                                             ̂
                                     ̂
                                                     ̂ ̂
                                Z ̇  = A Z + A Z + B U
                                 n1   11 n1   12 n2   1  1
                                                       ̂
                                ̇
                                                Z
                                                          Z
                                                                 ̂ ̂
                                     ̂
                                Z = A Z + A  ii−1 ni−1  + A ii+1 ni+1  + B U i
                                            ̂
                                 ni
                                      ii ni
                                                                  i
                                                                                 (12.21)
                                  i = 2, … , n − 1
                                     ̂
                                             ̂
                                ̇
                                                 Z
                                                        ̂ ̂
                                Z = A Z + A   nn−1 nn−1  + B U n
                                 nn
                                                         n
                                      nn nn
             12.3.4  Performance Index
             To guarantee that the train would work at the given velocity and at the same time the traction
             force would stay the smallest, we propose a global optimization performance index as
                                  P                     M
                                 ∑                     ∑                 
                            J(k)=                    +                           (12.22)
                                                r  Q i    ‖u(k + i − 1|k)‖ R i
                                    ‖y(k + i|k)− y (i)‖
                                 i=1                   i=1
             where P is the optimization horizon, M is the control horizon, and Q and R are the weight
                                                                     i
                                                                          i
             matrices.
               Similarly, we can get a networked optimization performance index with information con-
             straints as follows:
                        ∑
                J (k)=     J (k)
                            i
                 i
                         out
                       j∈N
                         i
                           [                                                ]
                              P                           M
                        ∑    ∑               r       2   ∑                 2
                     =          ‖  j         j      ‖  +    ‖Δu (k + l − 1|k)‖   (12.23)
                                ‖̂ y (k + l |k) − y (k + l|k)‖
                                                               j
                                ‖                   ‖Q j                   R j
                         out  l=1                        l=1
                       j∈N
                         i
   292   293   294   295   296   297   298   299   300   301   302