Page 538 - Dynamics of Mechanical Systems
P. 538

0593_C15_fm  Page 519  Tuesday, May 7, 2002  7:05 AM





                       Balancing                                                                   519


                       where (x, y, z) and ( ˆ, ˆ, ˆ ) are the X, Y, Z components of P and  ,P ˆ   respectively. However,
                                        xyz
                                     ˆ
                                    P
                       because P and   are at opposite ends of a line segment with midpoint at the origin G,
                       we have:
                                                    ˆ x =−  , x  ˆ y =−  , y  ˆ z =− z         (15.4.11)


                       Hence, we have:


                                                            I =  I P ˆ                        (15.4.12)
                                                            P
                                                            ij  ij
                       and then

                                                      ( y + )    − xy      − xz  
                                                        2
                                                            2
                                                           z
                                                P ˆ
                                           I +  I = 2 m    − xy  ( x + )  − yz            (15.4.13)
                                            P
                                                                     2
                                                                  2
                                                                    z
                                            ij  ij
                                                       −         −       ( x + ) 
                                                                           2
                                                                               2
                                                        xz        yz         y  
                        Let  B ˆ   represent the body  B with the added weights at P  and  P ˆ  . Then, the  n ,  n j
                                                                                                  i
                                                        ˆ
                                                       B
                       components of the inertia dyadic of   are:
                                   B ˆ
                                   I = I +  I +  I P ˆ
                                       B
                                           P
                                   ij  ij  ij  ij
                                             m y + )]
                                       I + (   2  z 2      I − 2 mxy]        I − 2 mxz]  
                                         B
                                                             B
                                                                              B
                                            2
                                       [ 11               [ 12              [ 13            (15.4.14)
                                                                    z ]
                                                                (
                                     =   I − 2 mxy]     I + 2 m x + )        I − 2 myz]  
                                                                              B
                                                          B
                                                                  2
                                                                     2
                                           B
                                         [ 21  mxz]     [ 22    myz]      I + (         
                                                                             [ 23
                                                                            B
                                                                                   2
                                           B
                                                                                       2
                                                             B
                                                                                      y
                                          I − 2
                                          [ 31          [ 32           [ 33  2 m x + )] 
                                                            I − 2
                                                                         ˆ
                       Therefore, the products of inertia of the weighted body   are:
                                                                         B
                                                           B ˆ
                                                       B ˆ
                                                      I =  I = I −  2 mxy
                                                               B
                                                      12   21  12
                                                           B ˆ
                                                       B ˆ
                                                      I =  I = I −  2 mxz                     (15.4.15)
                                                               B
                                                      13   31  13
                                                       B ˆ
                                                      I =  I =  I =  2 myz
                                                           B ˆ
                                                               B
                                                      23   32  23
                       Hence, if these products of inertia are to be zero so that the weighted body is balanced
                       both statically and dynamically, we must find m, x, y, and z such that
                                                          2mxy =  I B
                                                                 12
                                                          2mxz =  I  B                        (15.4.16)
                                                                 13
                                                          2myz =  I  B
                                                                 23
   533   534   535   536   537   538   539   540   541   542   543