Page 316 -
P. 316

1 ∑
                                                  P =  n  P A(  i  )                      (10.33)
                                                       =
                                                       i 1
                                                   2 ∑
                                                  P =      P A ∩(  i  A )                 (10.34)
                                                                   j
                                                      1≤< ≤
                                                        ij n
                                                   3 ∑
                                                  P =       P A ∩(  i  A ∩  A )           (10.35)
                                                                    j
                                                                        k
                                                      1≤< < ≤
                                                        ij k n
                             etc. …, then:

                                               n  
                                            P U A k  = P −  P + P −  P +…+ −1(  ) n−1 P n  (10.36)
                                                           2
                                                       1
                                                                   4
                                                               3
                                               k=1  
                             This theorem can be proven by mathematical induction (we do not give the
                             details of this proof here).
                             Example 10.5
                             Using the events E, O, B, C as defined in Section 10.1, use Eq. (10.36) to show
                             that: P(E ∪ O ∪ B ∪ C) = 1.
                             Solution: Using Eq. (10.36), we can write:


                                PE ( ∪ O ∪ ∪ C) =  P E ( ) + P O) + P B ( ) +  P C ( )
                                         B
                                                       (
                                    − [ PE ( ∩ O) +  P E ( ∩ B) +  PE ( ∩ C) + P O ∩ B) +  P O ∩ C) + P B ( ∩  C)]
                                                                             (
                                                                   (
                                    + [ PE ( ∩ O ∩ B) + PE ( ∩ O ∩ C) + PE ( ∩ ∩ C) + P O ∩ ∩  C)]
                                                                              (
                                                                                  B
                                                                     B
                                    − PE ( ∩ O ∩ BB ∩  C)
                                                    
                                    =   1  +  1  +  2  +  3  1    − 0 +  2  +  6 1 +  2  +  1  + 0     + [0000  −  = 1
                                                                           +++ ] [ ]0
                                                    
                                     
                                                    
                                                                  6
                                     2
                                          2
                                             3
                                                               6
                                                        6
                             Example 10.6
                             Show that for any n events A , A , …, A , the following inequality holds:
                                                               n
                                                         2
                                                      1
                                                        n      n
                                                              ≤
                                                     P U A k ∑   P A(  k  )
                                                        k=1    k=1
                             Solution: We prove this result by mathematical induction:
                             © 2001 by CRC Press LLC
   311   312   313   314   315   316   317   318   319   320   321