Page 317 -
P. 317

• For n = 2, the result holds because by Eq. (10.26) we have:

                                             PA(  ∪ A ) =  P A(  ) +  P A(  ) −  P A(  ∩  A )
                                                1    2      1      2      1   2
                                   and since any probability is a non-negative number, this leads to
                                   the inequality:

                                                   PA(  ∪ A ) ≤  P A(  ) +  P A(  )
                                                      1    2      1     2

                                • Assume that the theorem is true for (n – 1) events, then we can write:

                                                        n      n
                                                              ≤
                                                     P U A k ∑   P A(  k  )
                                                        k=2    k=2

                                • Using associativity, Eq. (10.26), the result for (n – 1) events, and the
                                   non-negativity of the probability, we can write:


                                    n            n              n            n  
                                           P A ∪
                                                                             P A ∩
                                                            P A +
                                                                                         k
                                                       k
                                 P U A k  =    1  U  A  = (  1 )  P U  A k  −    1  U A  
                                                         
                                    k=1          k=1            k=2          k=2  
                                                                    
                                                              
                                              n
                                                                n
                                                                   k ∑
                                                       P A ∩
                                     ≤  PA ( ) + ∑ P A −    1 U A  ≤  n  PA(  )
                                                     )
                                                  (
                                                              
                                          1         k                       k
                                              k=2               k=2    k =1
                             which is the desired result.
                             In-Class Exercises
                             Pb. 10.8 Show that if the events A , A , …, A  are such that:
                                                               2
                                                            1
                                                                     n
                                                       A ⊂ A ⊂ … ⊂  A
                                                        1    2       n
                             then:
                                                          n  
                                                       P U A k  =  P A(  n )
                                                          k=1  

                             Pb. 10.9 Show that if the events A , A , …, A  are such that:
                                                            1
                                                                     n
                                                               2
                                                       A ⊃ A ⊃… ⊃   A
                                                        1    2       n
                             © 2001 by CRC Press LLC
   312   313   314   315   316   317   318   319   320   321   322