Page 189 - Environmental Nanotechnology Applications and Impacts of Nanomaterials
P. 189

174   Principles and Methods

           –3
              Conduction band  Shallow trapping states  –1
                                   −
                               O2 + e → O −
           –4                           2
                                                 0
                                     −         −
                            >Ti(IV)OH + e cb → >Ti(III)OH
          E (ev)  –5  hn    CH 3 CH 2 OH + h vb → CH 3 CHOH  E (NHE)
                                      +
                                                 1
                                    +         +
                            >Ti(IV)OH + h vb → >Ti(IV)OH
           –6
                                                 2
           –7   Valence band
                                    2
                 Solid TiO 2      TiO /Water
        Figure 5.16 Energy level positions for the photoexcitation of TiO 2
        ( E g = 3.2 eV) in the anatase form relative to the solid-solution
        interface redox potentials for key steps and possible electron
        transfer reactions. Surface trapping states within the bandgap
        energy domain are indicated.
          The surface hydration and dehydration process and photoexcitation
        can be followed with DRIFT (diffuse reflectance infrared Fourier trans-
        form) spectroscopy [29 31]. In Figure 5.18, evidence for the reversible
        hydration (Figure 5.17) and dehydration of TiO 2 is shown where the



           1.00                    H 2 O     Surface dehydration

           0.75
          K-M Units  0.50




           0.25


           0.00
              4000   3500   3000   2500    2000   1500
                   H           H      −1
                 O                E(cm )
                               O
                 Ti(IV)
                          Ti(IV)  Ti(IV)
        Figure 5.17  DRIFT spectra of TiO 2 . The broadband spanning
        2500–3900 cm  1  is due to >TiOH stretching vibrations in different
        atomic environments. With progressive dehydration, this characteris-
        tic feature disappears, and discrete stretches within 3400–3800 cm  1
        arise. Complete dehydration required thermal treatment for 12 hours
        at 623 K under a ~1  Torr vacuum. Dehydrated TiO 2 is reversibly
        rehydrated with water vapor. Surface trapping states clearly indicated
                                           1
        in the dehydrated spectra appear at 3716 cm .
   184   185   186   187   188   189   190   191   192   193   194