Page 205 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 205

190                   Finite Element Modeling and Simulation with ANSYS Workbench



              The displacement, strains, and stresses can be written in terms of the main variable—
            deflection w = w(x, y), as follows:

              Displacement:
                                         w =  w xy), ( deflection)
                                              (,
                                               ∂ w
                                         u =− z
                                               ∂ x                                     (6.7)
                                               ∂ w
                                         v =− z
                                               ∂ y

              Strains:
                                                     2
                                                    ∂ w
                                            ε= − z
                                             x
                                                    ∂x 2
                                                     2
                                                    ∂ w
                                            ε= − z                                     (6.8)
                                             y
                                                    ∂y 2
                                                       2
                                                      ∂ w
                                            γ xy  = − z 2
                                                     ∂∂xy
              Note that there is no stretch of the mid-surface caused by the deflection of the plate.
              Stresses (plane stress state):

                                                                
                                  σ          1   ν      0    ε x 
                                    x
                                         E                     
                                  σ  =     2   ν  1     0      ε y               (6.9)
                                    y
                                       1  −ν  0  0   1 (  −ν 2)/    
                                                                
                                                                γ xy
                                   τ xy                        
              or,
                                                                  ∂ w  
                                                                  2
                                                                   2  
                                 σ            1   ν     0      ∂x 
                                                                     
                                                                
                                   x
                                                                
                                                                  2
                                          E                  ∂ w 
                                 σ  =−z      2   ν  1   0      2                 (6.10)
                                   y
                                                                   y
                                        1  − ν  0  0  1 (  −ν  )    ∂y  
                                 τ xy                          ∂ 2 w  
                                                                    
                                                                  xy 
                                                                  ∂∂  
              The following equation governs the equilibrium of the plate in the z-direction:
                                             D∇ 4 w =  qx y)                           (6.11)
                                                     (,

            where
                                             ∂ 4    ∂ 4     ∂ 
                                                              4
                                        4
                                      ∇≡      4  + 2  2  2  +  4 
                                             ∂x   ∂x  ∂y   ∂y  
   200   201   202   203   204   205   206   207   208   209   210