Page 22 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 22

Introduction                                                                  7



            at node 2,

                                               f 2 1  2  f 1 2


            	                                         F 2
                                              F 2 =  f 2 +  f 1 2
                                                    1

            and, at node 3,

                                                F 3 =  f 2 2

                                              f 2 2  3  F 3


              Using Equations 1.4 and 1.5, we obtain

                                       F 1 =  k u 1 −  k u 2
                                                 1
                                            1
                                       F 2 =− k u 1 + ( k 1 +  ku 2 −  ku
                                                        )
                                                       2
                                             1
                                                              23
                                       F 3 =− k u 2 +  k u 3
                                             2
                                                   2
              In matrix form, we have
                                       k 1  − k 1   0  u 1    F 1 
                                                             
                                                       
                                      − k 1  k 1 +  k 2  − k 2  u 2 =             (1.6)
                                                               F 2
                                                        
                                       0    −      k 2      
                                                       
                                             k 2        u 3    F 3 
            or
                                                Ku = F                                 (1.7)
            in which, K is the stiffness matrix (structure matrix) for the entire spring system.
            1.2.2.1.1  An Alternative Way of Assembling the Whole Stiffness Matrix
            “Enlarging” the stiffness matrices for elements 1 and 2, we have

                                         k 1  − k 1  0 u 1     f 1 1 
                                                          1 
                                                    
                                        − k 1  k 1  0  u 2 =   f 2 
                                                        
                                         0   0    0  u 3     0   
                                                           
            and

                                        0   0    0   1 u     0 
                                                          2 
                                        0   2 k  −  2 k      2 u  =   1 f 
                                                              2
                                                               
                                                            
                                                        
                                        0   −  2 k  2 k    3 u      2 f  
   17   18   19   20   21   22   23   24   25   26   27