Page 26 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 26

Introduction                                                                 11



                                              100  − 100
                                        k 3 =   −       (N/mm )
                                              100  100  

                        Applying the superposition concept, we obtain the global stiffness matrix
                     for the spring system


                                       u 1     u 2       u 3      u 4
                                       100   − 100       0       0 
                                      − 100  100 +  200  − 200   0  
                                  K =                              
                                       0     − 200    200 +  100  − 100
                                                       −           
                                        0     0        100     1000  

                      or

                                          100  −100    0     0  
                                          −100  300  −200    0  
                                     K =                        
                                          0    −200   300   −100 
                                                                
                                           0    0   −100   100   

                      which is symmetric and banded.
                        Equilibrium (FE) equation for the whole system is

                                     100  − 100  0     0  u    F 1 
                                                           
                                                             1
                                    −          −              
                                                                  F 2
                                                                 
                                     100  300   200    0    u u 2  =  
                                                           
                                     0   − 200  300  − 100 u 3    
                                                           
                                                                  F 3
                                               −               
                                                          
                                      0  0     100   100  u 4    F 4 
                   b.  Applying the BCs  u 1  = u 4  = 0,  F 2  = 0,  and  F 3  = P, and “deleting” the first and
                     fourth rows and columns, we have
                                           300  − 200u 2    0
                                          −            =  
                                                            P
                                           200  300   u 3      
                        Solving this equation, we obtain
                                         u 2    /     2
                                               P 250 
                                           =      =   (mm)
                                                P 500 
                                                         3 
                                         u 3     3 /     
                   c.  From the first and fourth equations in the system of FE equations, we obtain
                     the reaction forces
                                                           N
                                          F 1 =− 100 u 2 =− 200 ()

                                                           N
                                          F 4 =− 100 u 3 =− 300 ()
   21   22   23   24   25   26   27   28   29   30   31