Page 26 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 26
Introduction 11
100 − 100
k 3 = − (N/mm )
100 100
Applying the superposition concept, we obtain the global stiffness matrix
for the spring system
u 1 u 2 u 3 u 4
100 − 100 0 0
− 100 100 + 200 − 200 0
K =
0 − 200 200 + 100 − 100
−
0 0 100 1000
or
100 −100 0 0
−100 300 −200 0
K =
0 −200 300 −100
0 0 −100 100
which is symmetric and banded.
Equilibrium (FE) equation for the whole system is
100 − 100 0 0 u F 1
1
− −
F 2
100 300 200 0 u u 2 =
0 − 200 300 − 100 u 3
F 3
−
0 0 100 100 u 4 F 4
b. Applying the BCs u 1 = u 4 = 0, F 2 = 0, and F 3 = P, and “deleting” the first and
fourth rows and columns, we have
300 − 200u 2 0
− =
P
200 300 u 3
Solving this equation, we obtain
u 2 / 2
P 250
= = (mm)
P 500
3
u 3 3 /
c. From the first and fourth equations in the system of FE equations, we obtain
the reaction forces
N
F 1 =− 100 u 2 =− 200 ()
N
F 4 =− 100 u 3 =− 300 ()