Page 99 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 99

84                    Finite Element Modeling and Simulation with ANSYS Workbench



                 and


                                                     4 θ                  2 θ
                                      u 4    v 4           u 2    v 2
                                      265   0     − 127  − .     0    − 127
                                                          265
                                      .
                                                                          
                                      0    212 5 .  0     0    − 212 5 .  0  
                                     − 127  0     8 8125  127    0     4063
                                 4
                           k 3 =  10 ×                                    
                                                          .
                                     265
                                     − .    0     127    265     0     127  
                                      0   − 212 5 .  0    0    212 5 .  0  
                                                                          
                                      − 127  0   4063   127     0     8 8125  
                  Assembling the global FE equation and noticing the following boundary conditions
                                 u 3 =  v 3 = θ=  u 4 =  v 4 = θ=  0
                                                      4
                                          3
                                 F X1 =  3000 lb,  F X2 =  0,  F Y1 =  F Y2 = − 3000 lb,
                                                               ⋅
                                 M 1 =− 72,,000 lb in. , M 2 =  72 ,000 lbin .
                                              ⋅

                 we obtain the condensed FE equation

                          144 3 .  0    127    − 141 7 .  0     0  u 1    3000  
                                                                             
                                                         0 784
                          0     213 3 .  564 .   0     − .     56 4 .    1 v      −3000  
                          127   56 4 .  13 542   0     − 5664 .  2708  θ    −72 000 
                                                                     
                                          ,
                                                                               ,
                                                                     
                                                                       1 
                                                                           
                                                                                  
                     4
                   10 ×                                                 =   
                         − 141 7 .  0    0     144 3 .   0     127     2 u      0   
                          0     − 0 784  − 56 4 .  0   213 3 .  − 564 .     2 v     −3000 
                                  .
                                                                             
                                                                     
                                                                 ,
                                                                       2 
                           0   564 .   2708    1227   − 56 4 .  13 542 θ     72 000,   
                  Solving this, we obtain
                                                    .
                                          u 1     0 092 in.  
                                                          
                                                   0 00104 in.
                                          v 1      − .    
                                           1 θ       − 00 . 00139 rad  
                                         
                                            =             
                                                    .
                                          u 2     0 0901in.   
                                          v 2      − 0 0018 in.  
                                                    .
                                                     − 5  
                                                  .
                                            2 θ      − 388 ×  10 rad  
                  To calculate the reaction forces and moments at the two ends, we employ the ele-
                 ment FE equations for elements 2 and 3 with known nodal displacement vectors. We
                 obtain
                                           F X3     − 672 7 . lb  
                                                         
                                           F Y3  =   2210 lb  
                                                60 364 lb in . 
                                                         ⋅
                                                   ,
                                           M 3           
   94   95   96   97   98   99   100   101   102   103   104