Page 99 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 99
84 Finite Element Modeling and Simulation with ANSYS Workbench
and
4 θ 2 θ
u 4 v 4 u 2 v 2
265 0 − 127 − . 0 − 127
265
.
0 212 5 . 0 0 − 212 5 . 0
− 127 0 8 8125 127 0 4063
4
k 3 = 10 ×
.
265
− . 0 127 265 0 127
0 − 212 5 . 0 0 212 5 . 0
− 127 0 4063 127 0 8 8125
Assembling the global FE equation and noticing the following boundary conditions
u 3 = v 3 = θ= u 4 = v 4 = θ= 0
4
3
F X1 = 3000 lb, F X2 = 0, F Y1 = F Y2 = − 3000 lb,
⋅
M 1 =− 72,,000 lb in. , M 2 = 72 ,000 lbin .
⋅
we obtain the condensed FE equation
144 3 . 0 127 − 141 7 . 0 0 u 1 3000
0 784
0 213 3 . 564 . 0 − . 56 4 . 1 v −3000
127 56 4 . 13 542 0 − 5664 . 2708 θ −72 000
,
,
1
4
10 × =
− 141 7 . 0 0 144 3 . 0 127 2 u 0
0 − 0 784 − 56 4 . 0 213 3 . − 564 . 2 v −3000
.
,
2
0 564 . 2708 1227 − 56 4 . 13 542 θ 72 000,
Solving this, we obtain
.
u 1 0 092 in.
0 00104 in.
v 1 − .
1 θ − 00 . 00139 rad
=
.
u 2 0 0901in.
v 2 − 0 0018 in.
.
− 5
.
2 θ − 388 × 10 rad
To calculate the reaction forces and moments at the two ends, we employ the ele-
ment FE equations for elements 2 and 3 with known nodal displacement vectors. We
obtain
F X3 − 672 7 . lb
F Y3 = 2210 lb
60 364 lb in .
⋅
,
M 3