Page 98 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 98

Beams and Frames                                                             83



                  For elements 2 and 3, the stiffness matrix in local system is

                                        u i ′   v i ′   i ′ θ  u j ′  v j ′  j ′ θ
                                        212 5 .  0    0    −212 5 .  0    0 
                                                                             
                                                                       5
                                                .
                                        0     2 65   127     0    −2 6 . 5  127  
                                        0     127   8125     0     − 127  4063
                        k 2 ′ = k 3 ′ = 10 4  ×                              
                                       − 212 5 .  0   0    212 5 .  0     0  
                                        0     − .   − 127    0     2 65  − 127 
                                                                     .
                                                2 65
                                                                             
                                         0   1227  4063     0     − 127  8125  
                 where i = 3, j = 1 for element 2, and i = 4, j = 2 for element 3.
                  The transformation matrix T is
                                          l   m   0   0    0     0
                                                                
                                          −m  l   0   0    0   0 
                                          0   0   1   0    0     0
                                      T =                       
                                           0  0   0   l    m   0 
                                           0  0   0  −m    l   0 
                                                                 
                                           0  0  0   0    0   1  

                  We have l = 0, m = 1 for both elements 2 and 3. Thus,


                                           0   1  0   0   0    0
                                                              
                                           −1  0  0   0   0  0 
                                           0   0  1   0   0    0
                                       T =                    
                                            0  0  0   0   1  0 
                                            0  0  0   −1  0  0 
                                                               
                                            0  0  0  0   0  1  

                  Using the transformation relation

                                                    T
                                               k =  T kT ′
                 we obtain the stiffness matrices in the global coordinate system for elements 2 and 3

                                                     3 θ                  1 θ
                                      u 3    v 3           u 1    v 1
                                      .
                                                          265
                                      265   0     − 127  − .     0    − 127
                                      0    212 5 .  0     0    − 212 5 .  0  
                                                                          
                                     − 127  0     8 8125  127    0     4063
                                 4
                           k 2 =  10 ×                                    
                                                          .
                                     265
                                     − .    0     127    265     0     127  
                                      0   − 212 5 .  0    0    212 5 .  0  
                                                                          
                                      − 127  0   4063   127     0    8 8125  
   93   94   95   96   97   98   99   100   101   102   103