Page 154 - Geochemical Anomaly and Mineral Prospectivity Mapping in GIS
P. 154

Analysis of Geologic Controls on Mineral Occurrence                  155

           scales of the fractal systems interpreted from the results of the two methods are similar.
           Discrepancies  in fractal dimensions estimated via the  box-counting method and the
           radial-density method are difficult to explain, although,  according to  Carlson (1991),
           such inconsistencies commonly occur in measuring fractal dimensions. For example, in
           estimating the radial-density of points in a raster-based GIS, there is no rule-of-thumb
           for choosing an ideal pixel size except that one should apply sound reasoning related to
           the geo-objects represented by the points. The results of the box-counting and the radial-
           density fractal analyses of the spatial distribution of the occurrences of epithermal Au
           deposits in the Aroroy district commonly imply, however, that certain types of controls
           are operating on at least two scales (lengths, widths, or diameters). One type of control
           (e.g., fracture systems) possibly operates at scales of at most 2.8 km, which is plausibly
           at the ‘deposit-to-another-deposit’ scale. The other type of control (e.g., hydrothermal
           systems) possibly operates at scales of at least 7 km, which is plausibly at the scale of a
           mineralised landscape (i.e.,  district scale in this case).  These interpretations can  be
           investigated further via the application of Fry analysis

           Fry analysis
              Fry analysis (Fry, 1979), which is a geometrical  method of spatial autocorrelation
           analysis of a  type of  point  geo-objects, is another  useful technique to study spatial
           distribution of points representing occurrences of mineral deposits of the type sought.
           The method plots translations (so-called Fry plots) of point geo-objects by using each
           and every point as a centre or origin for translation. Fig. 6-5 shows the basic principle in
           creating a Fry plot using analogue maps (e.g., tracing paper). A map of data points is
           marked  with  a series of  parallel (either north-south trending  or east-west trending)
           reference lines. On a second but empty  map, a centre  or origin is indicated by the
           intersection of a north-south trending line and an east-west trending line. The centre or
           origin in the second map is then placed on top of one of the data points (point 1 in Fig. 6-
           5), the reference lines of the same directions in  both maps are  kept parallel and the
           positions of all the data points are recorded in the second map. The centre or origin in the
           second map is then  placed on top  of a different data  point (point 2 in  Fig.  6-5), the
           reference lines of the same directions in both maps are kept parallel and the positions of
           all the data points are recorded again in the second map. The procedure is continued until
           all the data points have been used as the centre or origin in the second map. For n data
                          2
           points there are n -n translations created. These are called ‘all-object-separations’ plots
           and are more commonly known as ‘Fry plots’, developed originally for the investigation
           of strain and strain partitioning in rocks (Fry, 1979; Hanna and Fry, 1979). Fry plots
           have been used in the analysis of spatial distributions of occurrences of mineral deposits
           (Vearncombe and Vearncombe, 1999, 2002; Stubley, 2004; Kreuzer et al., 2007) and
           geothermal fields (Carranza et al., 2008c) in order to infer their structural controls.
              It is clear in Fig. 6-5 that a Fry plot enhances subtle patterns in a spatial distribution
           of points and it also records distances and orientations between pairs of translated points,
           which can  be used to construct a rose  diagram as a complementary tool for  visual
           analysis of trends reflecting controls by certain geological features. A rose diagram can
   149   150   151   152   153   154   155   156   157   158   159