Page 214 - Glucose Monitoring Devices
P. 214
References 217
[4] Facchinetti A, Del Favero S, Sparacino G, Castle JR, Ward WK, Cobelli C. Modeling
the glucose sensor error. IEEE Transactions on Biomedical Engineering 2014;61(3):
620e9.
[5] Vettoretti M, Cappon G, Acciaroli G, Facchinetti A, Sparacino G. Continuous glucose
monitoring: current use in diabetes management and possible future applications. Jour-
nal of Diabetes Science and Technology 2018;12(5):1064e71.
[6] Cappon G, Acciaroli G, Vettoretti M, Facchinetti A, Sparacino G. Wearable continuous
glucose monitoring sensors: a revolution in diabetes treatment. Electronics 2017;6(3).
[7] Chase JG, Hann CE, Jackson M, Lin J, Lotz T, Wong XW, Shaw GM. Integral-based
filtering of continuous glucose sensor measurements for glycaemic control in critical
care. Computer Methods and Programs in Biomedicine 2006;82(3):238e47.
[8] Facchinetti A, Sparacino G, Cobelli C. An online self-tunable method to denoise CGM
sensor data. IEEE Transactions on Biomedical Engineering 2010;57(3):634e41.
[9] Online denoising method to handle intraindividual variability of signal-to-noise ratio in
continuous glucose monitoring. IEEE Transactions on Biomedical Engineering 2011;
58(9):2664e71.
[10] Maran A, Crepaldi C, Tiengo A, Grassi G, Vitali E, Pagano G, Bistoni S, Calabrese G,
Santeusanio F, Leonetti F, Ribaudo M, Di Mario U, Annuzzi G, Genovese S, Riccardi G,
Previti M, Cucinotta D, Giorgino F, Bellomo A, Giorgino R, Poscia A, Varalli M.
Continuous subcutaneous glucose monitoring in diabetic patients: a multicenter
analysis. Diabetes Care 2002;25(2):347e52.
[11] Peyser TA, Nakamura K, Price D, Bohnett LC, Hirsch IB, Balo A. Hypoglycemic
accuracy and improved low glucose alerts of the latest Dexcom G4 platinum continuous
glucose monitoring system. Diabetes Technology and Therapeutics 2015;17(8):
548e54.
[12] Howsmon D, Bequette BW. Hypo- and hyperglycemic alarms: devices and algorithms.
Journal of Diabetes Science and Technology 2015;9(5):1126e37.
[13] Cappon G, Marturano F, Vettoretti M, Facchinetti A, Sparacino G. In silico assessment
of literature insulin bolus calculation methods accounting for glucose rate of change.
Journal of Diabetes Science and Technology 2019;13(1):103e10.
[14] Sparacino G, Zanderigo F, Corazza S, Maran A, Facchinetti A, Cobelli C. Glucose
concentration can be predicted ahead in time from continuous glucose monitoring
sensor time-series. IEEE Transactions on Biomedical Engineering 2007;54(5):931e7.
[15] Zecchin C, Facchinetti A, Sparacino G, Cobelli C. How much is short-term glucose
prediction in Type 1 diabetes improved by adding insulin delivery and meal content in-
formation to CGM data? A proof-of-concept study. Journal of Diabetes Science and
Technology 2016;10(5):1149e60.
[16] Oviedo S, Vehi J, Calm R, Armengol J. A review of personalized blood glucose predic-
tion strategies for T1DM patients. International Journal for Numerical Methods in
Engineering 2017;33(6).
[17] Dadlani V, Pinsker JE, Dassau E, Kudva YC. Advances in closed-loop insulin delivery
systems in patients with type 1 diabetes. Current Diabetes Reports 2018;18(10):88.
[18] Kovatchev B. Diabetes technology: monitoring, analytics, and optimal control. Cold
Spring Harbor Perspectives in Medicine 2019;9(6). https://doi.org/10.1101/cshper-
spect.a034389. pii: a034389.
[19] Mastrototaro J. Glucose monitor calibration methods. 2002. US Patent No. 6424847.
[20] Feldman BJ, M. G.V.. Method of calibrating an analyte-measurement device, and asso-
ciated methods, devices and systems. 2008. US Patent No. 0081969-A1.