Page 215 - Glucose Monitoring Devices
P. 215

218    CHAPTER 10 CGM filtering and denoising techniques




                         [21] Simpson PC, Brister M, Wightlin M, Pryor J. Dual electrode system for a continuous
                             analyte sensor. 2008. US Patent No. 0083617-A1.
                         [22] Anderson BDO, Moore JB. Optimal filtering. Dover Publications; 2005.
                         [23] Knobbe EJ, Buckingham B. The extended Kalman filter for continuous glucose
                             monitoring. Diabetes Technology and Therapeutics 2005;7(1):15e27.
                         [24] Palerm CC, Willis JP, Desemone J, Bequette BW. Hypoglycemia prediction and detec-
                             tion using optimal estimation. Diabetes Technology and Therapeutics 2005;7(1):3e14.
                         [25] Palerm CC, Bequette BW. Hypoglycemia detection and prediction using continuous
                             glucose monitoring-a study on hypoglycemic clamp data. Journal of Diabetes Science
                             and Technology 2007;1(5):624e9.
                         [26] Grewal MS, Andrews AP. Kalman filtering: theory and practice using MATLAB. John
                             Wiley and Sons; 2001.
                         [27] Hall P, Titterington DM. Bayesian "confidence intervals" for the cross-validate smooth-
                             ing spline. Journal of the Royal Statistical Society Series B (Methodological) 1937;45:
                             133e50.
                         [28] Common structure of techniques for choosing smoothing parameters in regression
                             problems. Journal of the Royal Statistical Society Series B (Methodological) 1987;
                             49(2):184e98.
                         [29] Nicolao GD, Sparacino G, Cobelli C. Nonparametric input estimation in physiological
                             systems: problems, methods, and case studies. Automatica 1997;33(5):851e70.
                         [30] Wahba G, Wendelberger J. Some new mathematical methods for variational objective
                             analysis using splines and cross validation. Monthly Weather Review 1980;108(8):
                             1122e43.
                         [31] Camber HA. Choice of an optimal shape parameter when smoothing noisy data. Com-
                             munications in Statistics e Theory and Methods 1979;8(14):1425e35.
                         [32] Sparacino G, Cobelli C. A stochastic deconvolution method to reconstruct insulin secre-
                             tion rate after a glucose stimulus. IEEE Transactions on Biomedical Engineering 1996;
                             43(5):512e29.
                         [33] Kovatchev BP, Clarke WL, Breton M, Brayman K, McCall A. Quantifying temporal
                             glucose variability in diabetes via continuous glucose monitoring: mathematical
                             methods and clinical application. Diabetes Technology and Therapeutics 2005;7(6):
                             849e62.
                         [34] Voskanyan G, Keenan DB, Mastrototaro JJ, Steil GM. Putative delays in interstitial fluid
                             (ISF) glucose kinetics can be attributed to the glucose sensing systems used to measure
                             them rather than the delay in ISF glucose itself. Journal of Diabetes Science and Tech-
                             nology 2007;1(5):639e44.
                         [35] Facchinetti A, Del Favero S, Sparacino G, Cobelli C. Model of glucose sensor error
                             components: identification and assessment for new Dexcom G4 generation devices.
                             Medical, and Biological Engineering and Computing 2015;53(12):1259e69.
   210   211   212   213   214   215   216   217   218   219   220