Page 11 -
P. 11

x                                  CONTENTS

                       9.2. Theory of Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
                           9.2.1. Elementary Notions in Theory of Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
                           9.2.2. Curvature of Curves on Surface .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 392
                           9.2.3. Intrinsic Geometry ofSurface .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 395
                       References for Chapter 9 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 397
                       10. Functions of Complex Variable .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 399
                       10.1. Basic Notions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 399
                            10.1.1. Complex Numbers. Functions of Complex Variable . . ... .. .. .. .. .. .. .. .. 399
                            10.1.2. Functions of Complex Variable . . . . . . . . . . . . . . . . . . ... .. .. .. .. .. .. .. .. 401
                       10.2. MainApplications .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 419
                            10.2.1. Conformal Mappings .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 419
                            10.2.2. Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
                       References for Chapter 10 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 433
                       11. Integral Transforms .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 435
                       11.1. General Form of Integral Transforms. Some Formulas . .. .. .. ... .. .. .. .. .. .. .. .. 435
                            11.1.1. Integral Transforms and Inversion Formulas . . . . . . . . ... .. .. .. .. .. .. .. .. 435
                            11.1.2. Residues. Jordan Lemma .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 435
                       11.2. Laplace Transform . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 436
                            11.2.1. Laplace Transform and the Inverse Laplace Transform . .. .. .. .. .. .. .. .. . 436
                            11.2.2. Main Properties of the Laplace Transform. Inversion Formulas for Some
                                   Functions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 437
                            11.2.3. Limit Theorems. Representation of Inverse Transforms as Convergent Series
                                   andAsymptotic Expansions .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 440
                       11.3. Mellin Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
                            11.3.1. Mellin Transform and the Inversion Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 441
                            11.3.2. Main Properties of the Mellin Transform. Relation Among the Mellin,
                                   Laplace, and Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
                       11.4. Various Forms of the Fourier Transform .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 443
                            11.4.1. Fourier Transform and the Inverse Fourier Transform ... .. .. .. .. .. .. .. .. 443
                            11.4.2. Fourier Cosine and Sine Transforms .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 445
                       11.5. Other Integral Transforms .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 446
                            11.5.1. Integral Transforms Whose Kernels Contain Bessel Functions and Modified
                                   Bessel Functions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 446
                            11.5.2. Summary Table of Integral Transforms. Areas of Application of Integral
                                   Transforms .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 448
                       References for Chapter 11 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 451
                       12. Ordinary Differential Equations .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 453
                       12.1. First-Order Differential Equations .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 453
                            12.1.1. General Concepts. The Cauchy Problem. Uniqueness and Existence Theorems 453
                            12.1.2. Equations Solved for the Derivative. Simplest Techniques of Integration . . . . 456
                            12.1.3. Exact Differential Equations. Integrating Factor . . . . . ... .. .. .. .. .. .. .. .. 458
                            12.1.4. Riccati Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
                            12.1.5. Abel Equations of the First Kind . . . . . . . . . . . . . . . . . ... .. .. .. .. .. .. .. .. 462
                            12.1.6. Abel Equations of the Second Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
                            12.1.7. Equations Not Solved for the Derivative . .. .. .. .. .. ... .. .. .. .. .. .. .. .. 465
                            12.1.8. Contact Transformations .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 468
                            12.1.9. Approximate Analytic Methods for Solution of Equations . . . . . . . . . . . . . . . . 469
                            12.1.10. Numerical Integration of Differential Equations .. .. ... .. .. .. .. .. .. .. .. 471
   6   7   8   9   10   11   12   13   14   15   16