Page 16 -
P. 16

CONTENTS                                   xv

                       16. Integral Equations .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 801
                       16.1. Linear Integral Equations of the First Kind with Variable Integration Limit . . . . . . . . . 801
                            16.1.1. Volterra Equations of theFirst Kind .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 801
                            16.1.2. Equations with Degenerate Kernel: K(x, t)= g 1 (x)h 1 (t)+ ··· + g n (x)h n (t) . . 802
                            16.1.3. Equations with Difference Kernel: K(x, t)= K(x – t) ... .. .. .. .. .. .. .. .. 804
                            16.1.4. Reduction of Volterra Equations of the First Kind to Volterra Equations of the
                                   Second Kind .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 807
                            16.1.5. Method of Quadratures . .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 808
                       16.2. Linear Integral Equations of the Second Kind with Variable Integration Limit . . . . . . . 810
                            16.2.1. Volterra Equations of theSecond Kind .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 810
                            16.2.2. Equations with Degenerate Kernel: K(x, t)= g 1 (x)h 1 (t)+ ··· + g n (x)h n (t) . . 811
                            16.2.3. Equations with Difference Kernel: K(x, t)= K(x – t) ... .. .. .. .. .. .. .. .. 813
                            16.2.4. Construction of Solutions of Integral Equations with Special Right-Hand Side 815
                            16.2.5. Method of Model Solutions .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 818
                            16.2.6. Successive Approximation Method . . . . . . . . . . . . . . . ... .. .. .. .. .. .. .. .. 822
                            16.2.7. Method of Quadratures . .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 823
                       16.3. Linear Integral Equations of the First Kind with Constant Limits of Integration . . . . . . 824
                            16.3.1. Fredholm Integral Equations of the First Kind . . . . . . . . . . . . . . . . . . . . . . . . . 824
                            16.3.2. Method of Integral Transforms .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 825
                            16.3.3. Regularization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827
                       16.4. Linear Integral Equations of the Second Kind with Constant Limits of Integration . . . . 829
                            16.4.1. Fredholm Integral Equations of the Second Kind. Resolvent . . . . . . . . . . . . . . 829
                            16.4.2. Fredholm Equations of the Second Kind with Degenerate Kernel . . . . . . . . . . 830
                            16.4.3. Solution as a Power Series in the Parameter. Method of Successive
                                   Approximations .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 832
                            16.4.4. Fredholm Theorems and the Fredholm Alternative . . . . . . . . . . . . . . . . . . . . . . 834
                            16.4.5. Fredholm Integral Equations of the Second Kind with Symmetric Kernel . . . . 835
                            16.4.6. Methods of Integral Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841
                            16.4.7. Method of Approximating a Kernel by a Degenerate One . . . . . . . . . . . . . . . . 844
                            16.4.8. Collocation Method .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 847
                            16.4.9. Method of LeastSquares . .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 849
                            16.4.10. Bubnov–Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850
                            16.4.11. Quadrature Method .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 852
                            16.4.12. Systems of Fredholm Integral Equations of the Second Kind . . . . . . . . . . . . . 854
                       16.5. Nonlinear Integral Equations .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 856
                            16.5.1. Nonlinear Volterra and Urysohn Integral Equations .. ... .. .. .. .. .. .. .. .. 856
                            16.5.2. Nonlinear Volterra Integral Equations . . . . . . . . . . . . . ... .. .. .. .. .. .. .. .. 856
                            16.5.3. Equations with Constant Integration Limits .. .. .. .. ... .. .. .. .. .. .. .. .. 863
                       References for Chapter 16 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 871
                       17. Difference Equations and Other Functional Equations . . . . . ... .. .. .. .. .. .. .. .. 873
                       17.1. Difference Equations of Integer Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873
                            17.1.1. First-Order Linear Difference Equations of Integer Argument . . . . . . . . . . . . . 873
                            17.1.2. First-Order Nonlinear Difference Equations of Integer Argument . . . . . . . . . . 874
                            17.1.3. Second-Order Linear Difference Equations with Constant Coefficients .. .. .. 877
                            17.1.4. Second-Order Linear Difference Equations with Variable Coefficients .. .. .. 879
                            17.1.5. Linear Difference Equations of Arbitrary Order with Constant Coefficients . . 881
                            17.1.6. Linear Difference Equations of Arbitrary Order with Variable Coefficients . . . 882
                            17.1.7. Nonlinear Difference Equations of Arbitrary Order .. ... .. .. .. .. .. .. .. .. 884
   11   12   13   14   15   16   17   18   19   20   21