Page 18 -
P. 18

CONTENTS                                  xvii

                       18.6. Bessel Functions (Cylindrical Functions) . .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 947
                            18.6.1. Definitions and Basic Formulas .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 947
                            18.6.2. Integral Representations and Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . 949
                            18.6.3. Zeros and Orthogonality Properties of Bessel Functions . . . . . . . . . . . . . . . . . 951
                            18.6.4. Hankel Functions (Bessel Functions of the Third Kind) . . . . . . . . . . . . . . . . . . 952
                       18.7. Modified Bessel Functions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 953
                            18.7.1. Definitions. Basic Formulas .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 953
                            18.7.2. Integral Representations and Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . 954
                       18.8. Airy Functions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 955
                            18.8.1. Definition and Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955
                            18.8.2. Power Series and Asymptotic Expansions .. .. .. .. .. ... .. .. .. .. .. .. .. .. 956
                       18.9. Degenerate Hypergeometric Functions (Kummer Functions) . . . . . . . . . . . . . . . . . . . . . 956
                            18.9.1. Definitions and Basic Formulas .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 956
                            18.9.2. Integral Representations and Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . 959
                            18.9.3. Whittaker Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960
                       18.10. Hypergeometric Functions .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 960
                             18.10.1. Various Representations of the Hypergeometric Function . . . . . . . . . . . . . . 960
                             18.10.2. Basic Properties . .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 960
                       18.11. Legendre Polynomials, Legendre Functions, and Associated Legendre Functions . . . 962
                             18.11.1. Legendre Polynomials and Legendre Functions . . . . . . . . . . . . . . . . . . . . . . 962
                             18.11.2. Associated Legendre Functions with Integer Indices and Real Argument . . 964
                             18.11.3. Associated Legendre Functions. General Case .. .. ... .. .. .. .. .. .. .. .. 965
                       18.12. Parabolic Cylinder Functions .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 967
                             18.12.1. Definitions. Basic Formulas .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 967
                             18.12.2. Integral Representations, Asymptotic Expansions, and Linear Relations . . . 968
                       18.13. Elliptic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969
                             18.13.1. Complete Elliptic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969
                             18.13.2. Incomplete Elliptic Integrals (Elliptic Integrals) . . . . . . . . . . . . . . . . . . . . . . 970
                       18.14. Elliptic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972
                             18.14.1. Jacobi Elliptic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972
                             18.14.2. Weierstrass Elliptic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976
                       18.15. Jacobi Theta Functions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 978
                             18.15.1. Series Representation of the Jacobi Theta Functions. Simplest Properties . . 978
                             18.15.2. Various Relations and Formulas. Connection with Jacobi Elliptic Functions 978
                       18.16. Mathieu Functions and Modified Mathieu Functions . . . . . . . ... .. .. .. .. .. .. .. .. 980
                             18.16.1. Mathieu Functions .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 980
                             18.16.2. Modified Mathieu Functions .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 982
                       18.17. Orthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982
                             18.17.1. Laguerre Polynomials and Generalized Laguerre Polynomials . . . . . . . . . . . 982
                             18.17.2. Chebyshev Polynomials and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983
                             18.17.3. Hermite Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985
                             18.17.4. Jacobi Polynomials and Gegenbauer Polynomials . . . . . . . . . . . . . . . . . . . . 986
                       18.18. Nonorthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988
                             18.18.1. Bernoulli Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988
                             18.18.2. Euler Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989
                       References for Chapter 18 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 990
   13   14   15   16   17   18   19   20   21   22   23