Page 15 -
P. 15

xiv                                 CONTENTS

                            15.6.3. Differentiation Method .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 700
                            15.6.4. Splitting Method. Solutions of Some Nonlinear Functional Equations and
                                   Their Applications .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 704
                       15.7. Direct Method of Symmetry Reductions of Nonlinear Equations . . . . . . . . . . . . . . . . . . 708
                            15.7.1. Clarkson–Kruskal Direct Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
                            15.7.2. Some Modifications and Generalizations .. .. .. .. .. ... .. .. .. .. .. .. .. .. 712
                       15.8. Classical Method of Studying Symmetries of Differential Equations . . . . . . . . . . . . . . . 716
                            15.8.1. One-Parameter Transformations and Their Local Properties . . . . . . . . . . . . . . 716
                            15.8.2. Symmetries of Nonlinear Second-Order Equations. Invariance Condition . . . . 719
                            15.8.3. Using Symmetries of Equations for Finding Exact Solutions. Invariant
                                   Solutions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 724
                            15.8.4. Some Generalizations. Higher-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . 730
                       15.9. Nonclassical Method of Symmetry Reductions . . . . . . . . . . . . . ... .. .. .. .. .. .. .. .. 732
                            15.9.1. Description of the Method. Invariant Surface Condition . . . . . . . . . . . . . . . . . 732
                            15.9.2. Examples: The Newell–Whitehead Equation and a Nonlinear Wave Equation  733
                       15.10. Differential Constraints Method .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 737
                             15.10.1. Description of the Method .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 737
                             15.10.2. First-Order Differential Constraints . .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 739
                             15.10.3. Second- and Higher-Order Differential Constraints . . . . . . . . . . . . . . . . . . . 744
                             15.10.4. Connection Between the Differential Constraints Method and Other
                                     Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
                       15.11. Painlev´ e Test for Nonlinear Equations of Mathematical Physics . . . . . . . . . . . . . . . . . 748
                             15.11.1. Solutions of Partial Differential Equations with a Movable Pole. Method
                                     Description . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 748
                             15.11.2. Examples of Performing the Painlev´ e Test and Truncated Expansions for
                                     Studying Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750
                             15.11.3. Construction of Solutions of Nonlinear Equations That Fail the Painlev´ e
                                     Test,Using Truncated Expansions .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 753
                       15.12. Methods of the Inverse Scattering Problem (Soliton Theory) . . . . . . . . . . . . . . . . . . . . 755
                             15.12.1. Method Basedon Using Lax Pairs .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 755
                             15.12.2. Method Based on a Compatibility Condition for Systems of Linear
                                     Equations .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 757
                             15.12.3. Solution of the Cauchy Problem by the Inverse Scattering Problem Method  760
                       15.13. Conservation Laws and Integrals of Motion . . . . . . . . . . . . . . ... .. .. .. .. .. .. .. .. 766
                             15.13.1. Basic Definitions and Examples . .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 766
                             15.13.2. Equations Admitting Variational Formulation. Noetherian Symmetries . . . 767
                       15.14. Nonlinear Systems of Partial Differential Equations .. .. .. .. ... .. .. .. .. .. .. .. .. 770
                             15.14.1. Overdetermined Systems of Two Equations .. .. .. ... .. .. .. .. .. .. .. .. 770
                             15.14.2. Pfaffian Equations and Their Solutions. Connection with Overdetermined
                                     Systems . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 772
                             15.14.3. Systems of First-Order Equations Describing Convective Mass Transfer
                                     with Volume Reaction . .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 775
                             15.14.4. First-Order Hyperbolic Systems of Quasilinear Equations. Systems of
                                     Conservation Laws of Gas Dynamic Type .. .. .. .. ... .. .. .. .. .. .. .. .. 780
                             15.14.5. Systems of Second-Order Equations of Reaction-Diffusion Type . . . . . . . . 796
                       References for Chapter 15 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 798
   10   11   12   13   14   15   16   17   18   19   20