Page 12 -
P. 12

CONTENTS                                    xi

                       12.2. Second-Order Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
                            12.2.1. Formulas for the General Solution. Some Transformations . . . . . . . . . . . . . . . 472
                            12.2.2. Representation of Solutions as a Series in the Independent Variable . . . . . . . . 475
                            12.2.3. Asymptotic Solutions .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 477
                            12.2.4. Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
                            12.2.5. Eigenvalue Problems . .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 482
                            12.2.6. Theorems on Estimates and Zeros of Solutions .. .. .. ... .. .. .. .. .. .. .. .. 487
                       12.3. Second-Order Nonlinear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
                            12.3.1. Form of the General Solution. Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . 488
                            12.3.2. Equations Admitting Reduction of Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
                            12.3.3. Methods of Regular Series Expansions with Respect to the Independent
                                   Variable .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 492
                            12.3.4. Movable Singularities of Solutions of Ordinary Differential Equations.
                                   Painlev´ e Transcendents . .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 494
                            12.3.5. Perturbation Methods of Mechanics and Physics . . . . . . . . . . . . . . . . . . . . . . . 499
                            12.3.6. Galerkin Method and Its Modifications (Projection Methods) . . . . . . . . . . . . . 508
                            12.3.7. Iteration and Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

                       12.4. Linear Equations of Arbitrary Order .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 514
                            12.4.1. Linear Equations with Constant Coefficients . . . . . . . ... .. .. .. .. .. .. .. .. 514
                            12.4.2. Linear Equations with Variable Coefficients .. .. .. .. ... .. .. .. .. .. .. .. .. 518
                            12.4.3. Asymptotic Solutions of Linear Equations . . . . . . . . . ... .. .. .. .. .. .. .. .. 522
                            12.4.4. Collocation Method and Its Convergence . . . . . . . . . . ... .. .. .. .. .. .. .. .. 523
                       12.5. Nonlinear Equations of Arbitrary Order .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 524
                            12.5.1. Structure of the General Solution. Cauchy Problem .. ... .. .. .. .. .. .. .. .. 524
                            12.5.2. Equations Admitting Reduction of Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
                       12.6. Linear Systems of Ordinary Differential Equations . . . . . . . . . ... .. .. .. .. .. .. .. .. 528
                            12.6.1. Systems of Linear Constant-Coefficient Equations . . . ... .. .. .. .. .. .. .. .. 528
                            12.6.2. Systems of Linear Variable-Coefficient Equations . . . ... .. .. .. .. .. .. .. .. 539
                       12.7. Nonlinear Systems of Ordinary Differential Equations . . . . . . . ... .. .. .. .. .. .. .. .. 542
                            12.7.1. Solutions and First Integrals. Uniqueness and Existence Theorems . . . . . . . . . 542
                            12.7.2. Integrable Combinations. Autonomous Systems of Equations . . . . . . . . . . . . . 545
                            12.7.3. Elements of Stability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
                       References for Chapter 12 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 550

                       13. First-Order Partial Differential Equations .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 553
                       13.1. Linear and Quasilinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
                            13.1.1. Characteristic System. General Solution . .. .. .. .. .. ... .. .. .. .. .. .. .. .. 553
                            13.1.2. Cauchy Problem. Existence and Uniqueness Theorem ... .. .. .. .. .. .. .. .. 556
                            13.1.3. Qualitative Features and Discontinuous Solutions of Quasilinear Equations . . 558
                            13.1.4. Quasilinear Equations of General Form. Generalized Solution, Jump
                                   Condition, and Stability Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
                       13.2. Nonlinear Equations .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 570
                            13.2.1. Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
                            13.2.2. Cauchy Problem. Existence and Uniqueness Theorem ... .. .. .. .. .. .. .. .. 576
                            13.2.3. Generalized Viscosity Solutions and Their Applications . . . . . . . . . . . . . . . . . 579
                       References for Chapter 13 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 584
   7   8   9   10   11   12   13   14   15   16   17