Page 14 -
P. 14

CONTENTS                                   xiii

                       14.11. Construction of the Green’s Functions. General Formulas and Relations . . . . . . . . . . 639
                             14.11.1. Green’s Functions of Boundary Value Problems for Equations of Various
                                     Types in Bounded Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
                             14.11.2. Green’s Functions Admitting Incomplete Separation of Variables . . . . . . . . 640
                             14.11.3. Construction of Green’s Functions via Fundamental Solutions . . . . . . . . . . 642
                       14.12. Duhamel’s Principles in Nonstationary Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
                             14.12.1. Problems for Homogeneous Linear Equations . . . . . . . . . . . . . . . . . . . . . . . 646
                             14.12.2. Problems for Nonhomogeneous Linear Equations . . . . . . . . . . . . . . . . . . . . 648
                       14.13. Transformations Simplifying Initial and Boundary Conditions . . . . . . . . . . . . . . . . . . 649
                             14.13.1. Transformations That Lead to Homogeneous Boundary Conditions . . . . . . 649
                             14.13.2. Transformations That Lead to Homogeneous Initial and Boundary
                                     Conditions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 650
                       References for Chapter 14 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 650
                       15. Nonlinear Partial Differential Equations . . . . . . . . . . . . . . . . . ... .. .. .. .. .. .. .. .. 653
                       15.1. Classification of Second-Order Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
                            15.1.1. Classification of Semilinear Equations in Two Independent Variables . . . . . . . 653
                            15.1.2. Classification of Nonlinear Equations in Two Independent Variables . . . . . . . . 653
                       15.2. Transformations of Equations of Mathematical Physics . . . . . . . . . . . . . . . . . . . . . . . . . 655
                            15.2.1. Point Transformations: Overview and Examples .. .. ... .. .. .. .. .. .. .. .. 655
                            15.2.2. Hodograph Transformations (Special Point Transformations) . . . . . . . . . . . . . 657
                            15.2.3. Contact Transformations. Legendre and Euler Transformations . . . . . . . . . . . . 660
                            15.2.4. B¨ acklund Transformations. Differential Substitutions . . . . . . . . . . . . . . . . . . . 663
                            15.2.5. Differential Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
                       15.3. Traveling-Wave Solutions, Self-Similar Solutions, and Some Other Simple Solutions.
                            Similarity Method .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 667
                            15.3.1. Preliminary Remarks .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 667
                            15.3.2. Traveling-Wave Solutions. Invariance of Equations Under Translations . . . . . 667
                            15.3.3. Self-Similar Solutions. Invariance of Equations Under Scaling
                                   Transformations .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 669
                            15.3.4. Equations Invariant Under Combinations of Translation and Scaling
                                   Transformations, and Their Solutions . . . . . . . . . . . . . ... .. .. .. .. .. .. .. .. 674
                            15.3.5. Generalized Self-Similar Solutions . . . . . . . . . . . . . . . ... .. .. .. .. .. .. .. .. 677
                       15.4. Exact Solutions with Simple Separation of Variables .. .. .. .. ... .. .. .. .. .. .. .. .. 678
                            15.4.1. Multiplicative and Additive Separable Solutions . . . . . . . . . . . . . . . . . . . . . . . 678
                            15.4.2. Simple Separation of Variables in Nonlinear Partial Differential Equations . . . 678
                            15.4.3. Complex Separation of Variables in Nonlinear Partial Differential Equations . 679
                       15.5. Method of Generalized Separation of Variables .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 681
                            15.5.1. Structure of Generalized Separable Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 681
                            15.5.2. Simplified Scheme for Constructing Solutions Based on Presetting One System
                                   of Coordinate Functions .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 683
                            15.5.3. Solution of Functional Differential Equations by Differentiation . . . . . . . . . . . 684
                            15.5.4. Solution of Functional-Differential Equations by Splitting . . . . . . . . . . . . . . . . 688
                            15.5.5. Titov–Galaktionov Method .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 693
                       15.6. Method of Functional Separation of Variables . . . . . . . . . . . . . ... .. .. .. .. .. .. .. .. 697
                            15.6.1. Structure of Functional Separable Solutions. Solution by Reduction to
                                   Equations with Quadratic Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
                            15.6.2. Special Functional Separable Solutions. Generalized Traveling-Wave
                                   Solutions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 697
   9   10   11   12   13   14   15   16   17   18   19