Page 13 -
P. 13

xii                                CONTENTS

                       14. Linear Partial Differential Equations .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 585
                       14.1. Classification of Second-Order Partial Differential Equations . . . . . . . . . . . . . . . . . . . . 585
                            14.1.1. Equations with TwoIndependent Variables . .. .. .. .. ... .. .. .. .. .. .. .. .. 585
                            14.1.2. Equations with Many Independent Variables . .. .. .. ... .. .. .. .. .. .. .. .. 589
                       14.2. Basic Problems of Mathematical Physics . .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 590
                            14.2.1. Initial and Boundary Conditions. Cauchy Problem. Boundary Value Problems 590
                            14.2.2. First, Second, Third, and Mixed Boundary Value Problems . . . . . . . . . . . . . . . 593
                       14.3. Properties and Exact Solutions of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
                            14.3.1. Homogeneous Linear Equations and Their Particular Solutions . . . . . . . . . . . . 594
                            14.3.2. Nonhomogeneous Linear Equations and Their Particular Solutions . . . . . . . . . 598
                            14.3.3. General Solutions of Some Hyperbolic Equations . . . . . . . . . . . . . . . . . . . . . . 600
                       14.4. Method of Separation of Variables (Fourier Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
                            14.4.1. Description of the Method of Separation of Variables. General Stage of
                                   Solution . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 602
                            14.4.2. Problems for Parabolic Equations: Final Stage of Solution . . . . . . . . . . . . . . . 605
                            14.4.3. Problems for Hyperbolic Equations: Final Stage of Solution . . . . . . . . . . . . . . 607
                            14.4.4. Solution of Boundary Value Problems for Elliptic Equations . . . . . . . . . . . . . . 609
                       14.5. Integral Transforms Method .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 611
                            14.5.1. Laplace Transform and Its Application in Mathematical Physics . . . . . . . . . . . 611
                            14.5.2. Fourier Transform and Its Application in Mathematical Physics . . . . . . . . . . . 614
                       14.6. Representation of the Solution of the Cauchy Problem via the Fundamental Solution . . 615
                            14.6.1. Cauchy Problem for Parabolic Equations .. .. .. .. .. ... .. .. .. .. .. .. .. .. 615
                            14.6.2. Cauchy Problem for Hyperbolic Equations . . . . . . . . . ... .. .. .. .. .. .. .. .. 617
                       14.7. Boundary Value Problems for Parabolic Equations with One Space Variable. Green’s
                            Function . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 618
                            14.7.1. Representation of Solutions via the Green’s Function . . . . . . . . . . . . . . . . . . . . 618
                            14.7.2. Problems for Equation s(x)  ∂w  =  ∂    p(x)  ∂w    –q(x)w + Φ(x, t) . .. .. .. .. .. 620
                                                         ∂t   ∂x     ∂x
                       14.8. Boundary Value Problems for Hyperbolic Equations with One Space Variable. Green’s
                            Function. Goursat Problem .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 623
                            14.8.1. Representation of Solutions via the Green’s Function . . . . . . . . . . . . . . . . . . . . 623
                                                          2
                                                               ∂
                            14.8.2. Problems for Equation s(x)  ∂ w 2 =  ∂x  p(x)  ∂w  –q(x)w + Φ(x, t) . .. .. .. .. . 624
                                                                     ∂x
                                                         ∂t
                                                      2       ∂w        ∂     ∂w
                                                     ∂ w
                            14.8.3. Problems for Equation  ∂t 2 + a(t)  ∂t  = b(t)  ∂x  p(x)  ∂x  – q(x)w + Φ(x, t)  626
                            14.8.4. Generalized Cauchy Problem with Initial Conditions Set Along a Curve . . . . . 627
                            14.8.5. Goursat Problem (a Problem with Initial Data of Characteristics) . . . . . . . . . . 629
                       14.9. Boundary Value Problems for Elliptic Equations with Two Space Variables . . . . . . . . . 631
                            14.9.1. Problems and the Green’s Functions for Equation
                                       2
                                             2
                                            ∂y 2 + b(x)
                                       ∂x 2 +
                                   a(x)  ∂ w  ∂ w    ∂w  + c(x)w =–Φ(x, y) . .. .. .. ... .. .. .. .. .. .. .. .. 631
                                                     ∂x
                            14.9.2. Representation of Solutions to Boundary Value Problems via the Green’s
                                   Functions .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . 633
                       14.10. Boundary Value Problems with Many Space Variables. Representation of Solutions
                             via the Green’s Function . .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 634
                             14.10.1. Problems for Parabolic Equations .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 634
                             14.10.2. Problems for Hyperbolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
                             14.10.3. Problems for Elliptic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
                             14.10.4. Comparison of the Solution Structures for Boundary Value Problems for
                                     Equations of Various Types . .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. 638
   8   9   10   11   12   13   14   15   16   17   18