Page 831 - Industrial Power Engineering and Applications Handbook
P. 831

24/786  Industrial Power Engineering and Applications Handbook

         Table 24.l(a)  Typical line parameters per circuit for HV and EHV transmission lines
         Nominal   Conductor   Positive sequence components              Zero  wquence components
         voltage, V,  type                                                             __
                             Ro         XLO       XCO       Zo  = JzzG  Rn         XLn    XC,
         kV(zm.s.)           Wkm        n/km      Wkm      R             n/km      Wkm    GWcm
                                                                                       __
         765      Quad Bersimib  1.142 x   2.619 x  IO-'   2.44 x  10'   252.8   2.633 x  IO-'   1.053   4.161  x  lo5
                 1  (QB)
         400      Twin Moose   2.979 x  IO-*   3.32 x  IO-'   2.88 x  IO5   309.22   1.619 x IO-'   1.24   4.46 x  io5
                  (TM)
         400      Twin AAAC   3.094 x   3.304 x  IO-'   2.82 x  IO5   305.24   1.682 x  lo-'   1.237   4.37 x  10'
                  (TA)
         400      Quad Zebra   1.68 x   2.544 x  IO-'   2.40 x  IO5   247.09   9.133   0.950   3.73 x  105
                  (QZ)
         400      Quad AAAC   1.566 x   2.682 x  IO-'   2.29 x 105   247.826   8.512   1.002   3.55 x  io5
                  (QA)
         400      Triple Zebra   2.242 x   2.992 x  IO-'   2.74 x IO'   286.32   12.186   1.112   4.23 x  105
                  (TZ)
         220      Zebra       7.487 x   3.992 x IO-'   3.408 x  io5  368.846   2.199 x IO-'   1.339   5.421 x  IO5
         132                  1.622 x  IO-'   3.861 x  IO-'   3.416 x  IO'   363. I69   4.056 x  IO-'   1.622   26

         ___ -.                                                                           ____

         Table 24.l(b)
                           ~~~~~
         Nominal   Conductor   Line inductance      Line capacitance                       Wavelength
         voltage, V,  Tvpe
                                                                        1
                                             x LO
                            XL"          L,, = -  xc,            Ci,  =  27r.  f . x,,   u=-  1
                                             2n. f
         kV(zm.s.)          GWcm        henry (H)   Wkm         n farad (nF)'   kds       krn
                                        ____        __--
         765      QB        2.619 x  IO-'   8.33 x  IO4   2.44 x 105   13.04   3.034 X  IO5   6.07 x  IO?
         400      TM         3.32 x  IO-'   10.56 x  IO4   2.88 x  Io"   1 1.05   2.927 x  10'   5.85 x  10'
         400      TA         3.304 x  IO-'   10.51 x  IO1   2.82 x  io5   11.28   2.904 x io5   5.81 x  10'
         400      QZ         2.544 x  IO-'   8.09 x IO4   2.40 x IO5   13.26   3.053 x IO5   6.11 xi03
         400      QA         2.682 x IO-'   8.53 x IO4   2.29 x 10'   13.89    2.905 x Io"   5.81 x IO'
         400      TZ         2.992 x lo-'   9.52 x IO4   2.74 x IO'   11.61    3.008 x  Io"   6.02 x 10'
         220      Z          3.992 x  IO-'   12.70 x  10"   3.408 x  io5   9.34   2.904 X 10'   5.81 X IO3
          132     P          3.861 x IO-'   12.28 x  10"   3.416 x 105   9.3 1   ,  2.958 x IO5   5.92 x10'
         *  I  nF = IO-'  F
         Note: The line parameters will vary with system voltage, configuration of line conductors and their spacing between themselves  and the
         ground, tower configuration,  etc.
         Based on Manual on Transmission Planning  Criteria, CEA (Central Electricity Authority)




           excitation  level  below  which  the  machine  may  be   ":
           unstable.                                         fco = -
                                                                  x co
           Figure  24.9  shows a  typical  output  characteristic  or   Pco  =   400
         reactive capability curve of a generator, illustrating the   2.74 x  105
         stability levels of the machine under different conditions   = 0.584 MVArIkm
         of  operation.  The  machine  must  operate  within  these
         levels and the voltage profile within the specified voltage   (iii) Voltage profile
         limits, as noted in Table 24.3.
                                                        Since the  charging  current  is capacitive in  nature,  the
         Example 24.1                                   line voltage drop at the far end would raise the terminal
         Consider a  400  kV,  triple-Zebra  line,  having  a  distributed   voltage  on  a  no-load  as  shown  in  Figure  24.10.  The
         leakage capacitive  reactance Xc0  of  2.74 x lo5 Wkm from   charging current and rise in terminal voltage both at no-
         Table 24.l(b).  Then the charging power per phase per km,   load or during an underloading condition are undesirable.
   826   827   828   829   830   831   832   833   834   835   836