Page 214 - Instrumentation Reference Book 3E
P. 214

198  Fiber optics in sensor instrumentation
            optical  edge  filters  (Figure  12.32)  (Measures   Boheim, G.  and  K.  Fritsch,  “Fiber-optic temperature
             1992). The spectral properties  of the edge filters   sensor  using  a  spectrum-modulated  semiconductor
            are  chosen  such  that  the  filter  operates  in  the   etalon?” SPZE Fiber  Optic and Laser Sensors  V, 838,
            middle  of  the  extreme  wavelength  shift  of  the   238-246  (1987)
            Bragg grating element and is placed immediately   Boheim, G.,  K.  Fritsch,  and R.  N. Poorman,  “Fiber-
                                                       linked  interferometric  pressure  sensor,”  Rev.  Sci.
            prior to the photodetector at the return fiber out-   Znstrum., 59, 1655-1659  (1987)
            put. Hence, as the Bragg wavelength shifts occur   Bosselmann, Th. and R. Ulrich:  ”High accuracy posi-
            in  response  to  the  changing  measurand,  the   tion-sensing with fiber-coupled white-light interfero-
             amount of light intensity passed by the edge filter   meters,”  2nd International Conference on Optical Fiber
             also changes. For a linear filter function   Sensors, Stuttgart, 361-364  (1984)
                                                      Change, Y. C. and T. M. Shay, “Frequency stabilisation
                F(X) = A(X  - XO)            (12.60)   of  a  laser  diode  to  a  Fabry-Perot  interferometer,’‘
                                                        Opt. Eng., 27, 424427 (1988)
            where A  is the filter  slope response  and XO is the   Chen, S., B. T. Meggitt, and A. J. Rogers, “Electronically
            wavelength for which P(A) is zero. The ratio of the   scanned  white-light  interferometry  with  enhanced
            intensity passed by the fiiter IF to that of the total   dynamic range,” Eec. Lett., 26,  1663-1664  (1990)
            light  intensity  IT  returned  (reference  signal)  is   Chen,  S.,  A.  W.  Palmer,  K.T.V.  Grattan,  and  B.  T.
             given by:                                  Meggitt,  “Study  of  electronically-scanned optical-
                                                       fiber white light Fizeau interferometer,” Elect. Lett.,
                                             (12.61)   27,  1032-1304 (1991)
                                                      Chen, S., A. W. Palmer, K. T. V. Grattan,  and B.  T.
                                                        Meggitt,  “An  extrinsic optical fiber interferometric
             assuming  that  the  narrow  backscattered  Bragg   sensor that uses multimode optical fiber: system and
             peak  has  a  Gaussian  profile.  When  an RG830   sensing head  design for low noise  operation,”  Opt.
             infrared  high-pass  filter  was  used  in  the  wave-   Lett.,  17, 701-703  (1992a)
             length ratiometric  detection  system with a Bragg   Chen,  S..  A.  J.  Palmer, K. T.  V.  Grattan,  and  B.  T.
             grating of sensitivity of 0.65 pmlpstrain, the linear   Meggitt, “Digital processing techniques for electroni-
             filtering range corresponded to a dynamic strain   cally scanned optical fiber white-light interferometry,”
             measurement  range  of  about  35,000 pstrain.   Appl.  Opt., 31, 6003-6010  (1992b)
             When  tested  on a Lexan beam it was shown to   Chen, S.,  B. T. Meggitt, K. T. V.  Grattan,  and A. W.
             have a strain resolution  of about 1 percent of the   Palmer,  “Instantaneous  fringe  order  identification
                                                        using  dual broad-band  sources  with  widely  spaced
             linear strain range of the filter element, although   wavelengths,” Elect. ELT., 29, 334-335 (1993)
             it is expected that this figure can be reduced by an   Cork,  M.,  A. D. Kersey, D. A. Jackson, and J. D. C.
             order of magnitude by improved noise perform-   Jones,  “All-fiber “Michelson” thermometer,” Elect.
             ance of the processing electronics.        Lett., 19, 471471 (1983)
                                                      Dandridge,  A.  and  L.  Goldberge,  Elect  Lett.,  18,
                                                        304-344 (1982)
             12.6  References                         Danliker, R., E. Zimmermann, and  G. Frosio, “Noise-
                                                        resistant signal processing for electronically scanned
             Al-Chalabi,  S.  A.,  B.  Culshaw,  and  D.E.N. Davies,   white-light interferometry,” 8th  Optical Fiber  Sensor
              “Partial coherence sources in interferometric sensors,”   Conference (OFS-8) ZEEE, Monterey, 53-56  (1992)
              1st Zn ternationul Conference on Optical Fiber Sensors   Dyott,  R. B., “The fiber optic Doppler  anemometer,”
              ZEE, London, 132-136  (1983)              Microwave Opt. Acoust., 2, 13-18  (1978)
             Archambault,  I.  L.,  L.  Reekie,  and  P.  St  J.  Russell,   Fox, N., “Optical Vibration Monitor,” MSc dissertation,
              “100% Reflectivity Bragg reflectors produced in opti-   City University, London (1987)
              cal fibers by single excimer laser pulses,” Elect. Lett.,   Gialliorenzi, T. G., J. A. Bucaro, A. Dandridge, G. H.
              29, 535455 (1993a)                        Sigel, J. H. Gale, S. C. Rashleigh, and R. G. Priest,
             Archambault,  I.  L.,  L.  Reekie,  and  P.  St  J.  Russel,   “Optical fiber  sensor technology,” ZEEE  J.  Quant.
              “High reflectivity and  narrow bandwidth fiber grat-   Elect., 18, 626 (1982)
              ings written by  a single excimer pulse.” Elect.  Lett.,   Grattan, K. T. V. and E. T. Meggitt (eds), Optical Fiber
              29,28-29  (1 993b)                        Sensor Technology,  Chapman & Hall, London (1994)
             Askins,  C.  G.,  T.  E.  Tsai,  G.  M.  Williams,  M.  A.   Jackson, D. A. and B. T. Meggitt, Non-Contacting Opti-
              Putnam, M. Bashkansky, and E. J. Friebele, “Fiber   cal  Velocimeter for  Remote  Vibration Analysis, Sira
              Bragg reflectors prepared by a single excimer pulse,”   (Internal Report), SirdKent University Development
               Opt. Lett.,  17, 833-835  (1992)         Report (1986)
             Bianco, A. D. and F. Baldini, “A portable optical fiber   Jackson, D. A,, A. Dandridge, and S. N. Sheem, “Mea-
              sensor for oxygen detection,” 9th Optical Fiber Sensor   surement of  small phase  shifts using a  single-mode
               Conference, Ferenzi, Italy, 197-200  (1993)   optical fiber interferometer,” Opt. Lett., 6, 139 (1980)
             Boheim, G.. “Remote displacement measurement using   Kajiya, F., 0. Hiramatsu, Y. Ogasawara: K. Mito, and
              a passive interferometer with a fiber optic link,” Appl.   K.  Tsujinka,  “Dual-fiber  laser  velocimeter  and  its
              Opt., 24, 2335 (1985)                     application to  the  measurement of  coronary  blood
             Boheim, G.,  “Fiber-optic thermometer using semicon-   velocity,”  Biorrheology,  Pergamon  Press,  227-235
              ductor etalon sensor,” Elect. Lett., 22,238-239  (1986)   (1988)
   209   210   211   212   213   214   215   216   217   218   219