Page 181 - Sami Franssila Introduction to Microfabrication
P. 181

160 Introduction to Microfabrication



                            Target surface                 Table 15.1 Energy loss of implanted ions in silicon
                                                          Nuclear stopping in silicon (independent of energy) in
                                                                           keV/µm
               Incident ion beam               R L
                                                              Boron                   92
                                       R       R P           Phosphorus              447
                                                              Arsenic                1160
                                           RL
                                                               Electronic stopping in silicon in keV/µm
            Figure 15.2 Key concepts for implanted ions: R p
            projected range, R L lateral straggle         E/keV    Boron    Phosphorus    Arsenic
                                                            10       65         88           90
                                                            50      145        196          200
            energy in this approximation (Table 15.1). Electronic  100  205    277          283
            stopping is proportional to the square root of energy:  200  290   391          401
               S e = 3.3 × 10 −17 (Z 1 + Z 2 )(E/M 1 ) 1/2  eVcm 2
                                                  (15.2)
            The total energy loss is calculated as         The masking layer thicknesses for ion implanta-
                                                         tion will thus have to be of the same order of mag-
                        dE/dx = −(S n + S e )N    (15.3)  nitude (Figure 15.3(b)). Photoresists suit ideally, and
                                                         thermal oxides can be used. But unlike diffusion,
                                                  −3
                                              22
            where N is the silicon atom density, 5 × 10 cm .  oxides need not be grown specifically for implantation
              Combined energy loss from nuclear and electronic  masking.
            stopping for 100 keV phosphorus is 724 µm/keV. The  Thin oxides, in the 10 nm range, are grown on silicon
            range will then be ca. 0.14 µm (100 keV/724 µm/keV).  before implantation for two reasons: implantation is a
            With typical implant energies of 10 to 200 keV ranges  high-energy process, and accelerated ions sputter metal
            are from 10 nm for 10 keV arsenic to 500 nm for  atoms from the implanter hardware. The thin oxide pre-
            200 keV boron (Figure 15.3(a) and 15.4(a)).  vents these metal atoms from penetrating the silicon.


                                                                  SiO 2
                       10 21                                  10 21
                                               Arsenic                               Arsenic
                                               Phosphorous                           Arsenic
                                               Boron          10 20                  Boron
                         20
                       10
                                                                                     Boron
                      Concentration (cm −3 )  10 19         Concentration (cm −3 )  10 19
                                                               18
                         18
                       10
                                                              10
                       10
                                                               16
                         16
                       10 17                                  10 17
                                                              10
                       10 15                                  10 15
                          0.00 0.20 0.40 0.60  0.80 1.00        0.00 0.20 0.40 0.60  0.80 1.00
                                   Depth (µm)                           Depth (µm)
                                      (a)                                   (b)

            Figure 15.3 (a) 100 keV implantation of arsenic, phosphorus and boron: the lighter ions will penetrate deeper and
            (b) implantation through 250 nm thick oxide: most arsenic ions (both 50 keV and 150 keV) will remain in oxide, while
            boron (both 50 keV and 150 keV) will dope silicon
   176   177   178   179   180   181   182   183   184   185   186