Page 346 - MATLAB an introduction with applications
P. 346

Direct Numerical Integration Methods ———  331






                                  X   =  X +  τ  (X  −  X  )                                        ...(6.54)
                                   t+
                                         t
                                    τ
                                            θ∆t  t+ θ  ∆  t  t



                                                                    X t+ t∆   X t+θ∆ t
                                                 X t



                                                                    ∆
                                                                              θ
                                                                  t+ t      t+ ∆ t
                                                t      τ
                                                           Fig. 6.4
                   Successive integration for Eq. (6.54) gives the following expressions for  X    t+ τ   and X t+ τ  :





                                  X    =  X +  X  τ +  τ 2  (X  −  X  )                             ...(6.55)
                                   t+
                                         t
                                    τ
                                             t
                                                 θ
                                                2 ∆t   t+ θ  ∆  t  t


                                  X t+ τ  =  t  X    t τ X +  1  X       t τ +  2  +  τ 3  (X    t+ θ  ∆  t  −  X    t )   ...(6.56)
                                                2       6θ∆ t

                   Substituting  τ  θ =  ∆  t  into the above Eqs. (6.55) and (6.56), we obtain the following expressions for  X and
                   X at time  t +  θ∆t  :



                                 X    =  X +  θ∆t (X +  X  )                                        ...(6.57)
                                  t+
                                   θ∆t
                                         t
                                             2   t   t+ θ∆t
                                                    2



                                 X    =  X + θ∆t X +  θ∆t 2  (X    +  2X    )                       ...(6.58)
                                  t+
                                         t
                                   θ∆t
                                                t
                                                     6    t+ θ∆t  t
                   Solving Eqs. (6.57) and (6.58) for  X    t+ θ∆t   and X   t+ θ∆t  in terms of  X    t+ θ∆t , we get


                                 X t+ θ∆t  =  6  (X t+ θ∆t  −  X t ) −  6  (X −     t
                                                               ) 2X
                                                               t
                                         2
                                        θ∆t 2            θ∆t

                                                     ) 2X −
                                 X    =  3  (X    − X −      θ∆ t  X                                ...(6.59)
                                  t+
                                   θ∆t
                                        θ∆t   t+ θ∆t  t   t   2   t
                   The difference formulas in the Wilson Theta algorithm are then given by


                                                      −
                                                                      −
                                                         X
                                                                   X
                               { X    t +  θ∆t } =  6  ( { X t +  θ∆ t } { }) −  6  { } { }         ...(6.60)
                                                                        2 X
                                                                    t
                                                                           t
                                                          t
                                         2
                                        θ∆t 2                 θ∆t
                                         3

                                                    −
                                                             { } −
                                                          −
                               { X    t +θ∆ t } =  θ∆ t  { ( X t +θ∆ t } { }) 2 X   t  θ∆ t { }     ...(6.61)
                                                      X
                                                                       X
                                                        t
                                                                         t
                                                                    2
   341   342   343   344   345   346   347   348   349   350   351