Page 364 - MATLAB an introduction with applications
P. 364

Direct Numerical Integration Methods ———  349

                                          3


                                          2 1

                                        Displacement(m)  –1

                                          0





                                         –2

                                         –3
                                           0    0.2   0.4   0.6   0.8   1    1.2   1.4
                                                            Time(s)
                                           Fig. E6.4(b) MATLAB output for  ∆∆ ∆∆ ∆t = 0.005s

                   Example E6.5: Solve the following nonlinear vibration problem, using the central difference method.


                                                    3
                                  MX + CX + KX + K X =  F cosωt
                                                  ∗

                   with M = 1.0, C = 0.5, K = 1.0, = K* = 0.5, ∆t = 0.05, t max  = 5.0, and the initial conditions  X =  X = 0. Plot
                                                                                                 0
                                                                                             0
                   the variation of X with t. Take ω = 1 and F = 10.
                                                            3
                   Solution: Here in X  an additional term with –K*X  will come and other things will remain same. Assuming
                                   i+1
                                                            i
                   F = 10N, the following MATLAB program is developed.
                    % INITIAL VALUES
                         m=1;k=1;c=0.5;ks=0.5;dt=0.05;
                         x0=0;x0d=0;omega=1;
                         F0=10;
                         T=5;
                         x0dd=inv(m)*(F0-c*x0d-k*x0);
                         xprev=x0-(dt*x0d)+((dt^2)*x0dd/2);
                         a0=1/dt^2;a1=1/(2*dt);a2=2*a0;
                         mbar=a0*m+a1*c;
                      t=0;
                      v(1)=x0d;a(1)=x0dd;
                      i=1;
                      for t=0:dt:T+dt
                      X(i)=x0;
                      f=F0*cos(omega*t);
                       % NON-LINEAR TERM
                      fbar=f+(a2*m-k)*x0+(a1*c-a0*m)*xprev-ks*(x0^3);
                      x=inv(mbar)*fbar;
   359   360   361   362   363   364   365   366   367   368   369